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Abstract

We consider the problem of sparsity-constrained M -estimation when both explanatory and
response variables have heavy tails (bounded 4-th moments), or a fraction of arbitrary corruptions.
We focus on the k-sparse, high-dimensional regime where the number of variables d and the sample
size n are related through n ∼ k log d. We define a natural condition we call the Robust Descent
Condition (RDC), and show that if a gradient estimator satisfies the RDC, then Robust Hard
Thresholding (IHT using this gradient estimator), is guaranteed to obtain good statistical rates.
The contribution of this paper is in showing that this RDC is a flexible enough concept to recover
known results, and obtain new robustness results. Specifically, new results include: (a) For
k-sparse high-dimensional linear- and logistic-regression with heavy tail (bounded 4-th moment)
explanatory and response variables, a linear-time-computable median-of-means gradient estimator
satisfies the RDC, and hence Robust Hard Thresholding is minimax optimal; (b) When instead of
heavy tails we have O(1/

√
k log(nd))-fraction of arbitrary corruptions in explanatory and response

variables, a near linear-time computable trimmed gradient estimator satisfies the RDC, and hence
Robust Hard Thresholding is minimax optimal. We demonstrate the effectiveness of our approach
in sparse linear, logistic regression, and sparse precision matrix estimation on synthetic and real-
world US equities data.

1 Introduction

M -estimation is a standard technique for statistical estimation [vdV00]. The past decade has seen
successful extensions of M -estimation to the high dimensional setting with sparsity (or other low-
dimensional structure), e.g., using Lasso [Tib96, BvdG11, HTW15, Wai19]. Yet sparse modeling in
high dimensions is NP-hard in the worst case [BDMS13, ZWJ14]. Thus theoretical sparse recovery
guarantees for most computationally tractable approaches (e.g., `1 minimization [Don06, CRT04,
Wai09], Iterative Hard Thresholding [BD09]) rely on strong assumptions on the probabilistic models
of the data, such as sub-Gaussianity. Under such assumptions, these approaches achieve the minimax
rate for sparse regression [RWY11].

Meanwhile, statistical estimation with heavy tailed outliers or even arbitrary corruptions has long
been a focus in robust statistics [Box53, Tuk75, Hub11, HRRS11].1 But heavy-tails and arbitrary
corruptions in the data violate the assumptions required for convergence of the usual algorithms. A
central question then, is what assumptions are sufficient to enable efficient and robust algorithms for
high dimensional M -estimation under heavy tails or arbitrary corruption.

Huber’s seminal work [Hub64] and more modern followup work [Loh17] has considered replacing
the classical least squared risk minimization objective with a robust counterpart (e.g., Huber loss).
Other approaches (e.g., [Li13]) considered regularization-based robustness approaches. However, when
there are outliers in the explanatory variables (covariates), these approaches do not seem to succeed
[CCM13]. Meanwhile, approaches combining recent advances in robust mean estimation and gradient
descent have proved remarkably powerful in the low-dimensional setting [PSBR18, KKM18, DKK+18],

1Following [Min18, FWZ16], by heavy-tail we mean satisfying only weak moment bounds, specifically, bounded 4-th
order moments (compared to sub-exponential or sub-Gaussian).
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but for high dimensions, have so far only managed to address the setting where the covariance of the
explanatory variables is the identity, or sparse [BDLS17, LSLC18]. Meanwhile, flexible and statistically
optimal approaches ([Gao17]) have relied on intractable estimators such as Tukey-depth.

For the heavy-tail setting, another line of research considers estimators such as Median-of-Means
(MOM) [NY83, JVV86, AMS99, Min15] and Catoni’s mean estimator [Cat12, Min18] only use weak
moment assumptions. [Min15, BJL15, HS16] generalized these ideas to M -estimation, yet it is not
clear if these approaches apply to the high-dimensional setting with heavy tailed covariates.

Main Contributions. In this paper, we develop a sufficient condition that when satisfied, guar-
antees that an efficient algorithm (a variant of IHT) achieves the minimax optimal statistical rate.
We show that our condition is flexible enough to apply to a number of important high-dimensional
estimation problems under either heavy tails, or arbitrary corruption of the data. Specifically:

1. We consider two models. For our arbitrary corruption model, we assume that an adversary re-
places an arbitrary ε-fraction of the authentic samples with arbitrary values (Definition 2.1). For
the heavy-tailed model, we assume our data (response and covariates) satisfy only weak moment
assumptions (Definition 2.2) without sub-Gaussian or sub-exponential concentration bounds.

2. We propose a notion that we call the Robust Descent Condition (RDC). Given any gradient es-
timator that satisfies the RDC, we define RHT – Robust Hard Thresholding (Algorithm 1) for
sparsity constrained M -estimation, and prove that Algorithm 1 converges linearly to a minimax
statistically optimal solution. Thus the RDC and Robust Hard Thresholding form the basis for a
Deterministic Meta-Theorem (Theorem 3.1) that guarantees estimation error rates as soon as the
RDC property of any gradient estimator can be certified.

3. We then obtain non-asymptotic bounds via certifying the RDC for different robust gradient es-
timators under various statistical models. (A) For corruptions in both response and explanatory
variables, we show the trimmed gradient estimator satisfies the RDC. Thus our algorithm RHT
has minimax-optimal statistical error, and tolerates O(1/(

√
k log(nd)))-fraction of outliers. This

fraction is nearly independent of the d, which is important in the high dimension regime. (B) In the
heavy tailed regime, we use the Median-of-Means (MOM) gradient estimator. Our RHT algorithm
obtains the sharpest available error bound, in fact nearly matching the results in the sub-Gaussian
case. With either of these gradient estimators, our algorithm is computationally efficient, nearly
matching vanilla gradient descent. This is in particular much faster than algorithms relying on
sparse PCA relaxations as subroutines ([BDLS17, LSLC18]).

4. We use Robust Hard Thresholding for neighborhood selection [MB06] for estimating Gaussian
graphical models, and provide model selection guarantees under adversarial corruption of the data;
our results share similar robustness guarantees with sparse regression.

5. We demonstrate the effectiveness of Robust Hard Thresholding on both arbitrarily corrupted/heavy
tailed synthetic data and (unmodified) real data.

A concrete illustration of 3(B) above: Consider a sparse linear regression problem without noise
(sparse linear equations), with scaling n = O(k log d). When the covariates are sub-Gaussian, Lasso
succeeds in exact recovery with high probability (as expected). When the covariates have only 4-th
moments, we do not expect Lasso to succeed, and indeed experiments indicate this. Moreover, to
the best of our knowledge, no previous efficient algorithm with O(k log(d)) samples can guarantee
exact recovery in this observation model ([FWZ16] has a statistical rate depending on the norm of
the parameter β∗, and thus exact recovery for σ = 0 is not guaranteed). Our contributions show that
Robust Hard Thresholding using MOM achieves this (see also simulations in Figure 1(b)).

Related work

Sparse regression with arbitrary corruptions or heavy tails. Several works in robustness of
high dimensional problems consider heavy tailed distributions or arbitrary corruptions only in the
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response variables [Li13, BJK15, BJK17, Loh17, KP18, HS16, Min15, CLZL]. Yet these algorithms
cannot be trivially extended to the setting with heavy tails or corruptions in explanatory variables.
Another line [ACG13, VMX17, YLA18, SS18] focuses on alternating minimization approaches which
extend Least Trimmed Squares [Rou84]. However, these methods only have local convergence guar-
antees, and cannot handle arbitrary corruptions.

[CCM13] was one of the first papers to provide guarantees for sparse regression with arbitrary
outliers in both response and explanatory variables by trimming the design matrix. Similar trimming
techniques are also used in [FWZ16] for heavy tails in response and explanatory variables. Those re-
sults are specific to sparse regression, however, and cannot be easily extended to general M -estimation
problems. Moreover, even for linear regression, the statistical rates are not minimax optimal. [LM16]
uses Median-of-Means tournaments to deal with heavy tails in the explanatory variables and obtains
near optimal rates. However, Median-of-Means tournaments is not known to be computationally
tractable. [LL17] deals with heavy tails and outliers in the explanatory variables, but they require
higher moment bound (whose order is O(log(d))) in the isotropic design case. [Gao17] optimizes Tukey
depth [Tuk75, CGR18] for robust sparse regression under the Huber ε-contamination model, and their
algorithm is minimax optimal and can handle a constant fraction of outliers. However, computing
Tukey depth is intractable [JP78]. Recent results [BDLS17, LSLC18] leverage robust sparse mean
estimation in robust sparse regression. Their algorithms are computationally tractable, and can tol-
erate ε = const., but they require very restrictive assumptions on the covariance matrix (Σ = Id or
sparse), which precludes their use in applications such as graphical model estimation.

Robust M-estimation via robust gradient descent. Works in [CSX17, HI17] and later
[YCRB18a] first leveraged the idea of using robust mean estimation in each step of gradient descent,
using a subroutine such as geometric median. A similar approach using more sophisticated robust
mean estimation methods was later proposed in [PSBR18, DKK+18, YCRB18b, SX18, Hol18] for
robust gradient descent. These methods all focused on low dimensional robust M -estimation. Work
in [LSLC18] extended the approach to the high-dimensional setting (though is limited to Σ = Id
or sparse covariances). Even though the corrupted fraction ε can be independent of the ambient
dimension d by using sophisticated robust mean estimation algorithms [DKK+16, LRV16, SCV17],
or the sum-of-squares framework [KKM18], these algorithms (except [LSLC18]) are not applicable to
the high dimensional setting (n� d), as they require at least Ω(d) samples.

Robust estimation of graphical models. A line of research using a robustified covariance
matrix in Gaussian graphical models [LHY+12b, WG17, LT18] leverages GLasso [FHT08] or CLIME
[CLL11] to estimate the sparse precision matrix. These robust methods are restricted to Gaussian
graphical model estimation, and their techniques cannot be generalized to other M -estimation prob-
lems.

Notation. We denote the Hard Thresholding operator of sparsity k′ by Pk′ , and denote the
Euclidean projection onto the `2 ball B by ΠB . We use Ei∈uS to denote the expectation operator
obtained by the uniform distribution over all samples {i ∈ S}.

2 Problem formulation

We now define the corruption and heavy tails model and sparsity constrained M -estimation.

Definition 2.1 (ε-corrupted samples). Let {zi, i ∈ G} be i.i.d. observations with distribution P .
We say that a collection of samples {zi, i ∈ S} is ε-corrupted if an adversary chooses an arbitrary
ε-fraction of the samples in G and modifies them with arbitrary values.

This corruption model allows corruptions in both explanatory and response variables in regression
problems where we observe zi = (yi,xi). Definition 2.1 also allows the adversary to select an ε-fraction
of samples to delete and corrupt.
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Definition 2.2 (heavy-tailed samples). For a distribution P of x ∈ Rd with mean E(x) and covariance
Σ, we say that P has bounded 2k-th moment, if there is a universal constant C2k such that, for a unit
vector v ∈ Rd, we have EP |〈v,x− E(x)〉|2k ≤ C2k EP (|〈v,x− E(x)〉|2)k.

Definition 2.2 allows heavy tails in both explanatory and response variables for zi = (yi,xi). For
example, in Corollary 4.3, we study linear regression with bounded 4-th moments for x and bounded
variance for y and noise.

Let ` : Rd×Z → R be a convex and differentiable loss function. Our target is the unknown sparse
population minimizer β∗ = arg minβ∈Rd,‖β‖0≤k Ezi∼P `i(β; zi), and we write f as the population

risk, f(β) = Ezi∼P `i(β; zi). Note that β∗’s definition allows model misspecification. The following
Definition 2.3 provides general assumptions for the population risk.

Definition 2.3 (Strong convexity/smoothness). For the population risk f , we assume µα‖β1 −
β2‖22/2 ≤ f(β1) − f(β2) − 〈∇f(β2),β1 − β2〉 ≤ µL‖β1 − β2‖22/2, where µα is the strong-convexity
parameter and µL is the smoothness parameter. The condition number is ρ = µL/µα ≥ 1.

A well known result [NRWY12] considers ERM with convex relaxation from ‖β‖0 to ‖β‖1, by cer-
tifying the RSC condition for sub-Gaussian ensembles – this obtains uniform convergence of the em-
pirical risk. From an optimization viewpoint, existing results reveal that gradient descent algorithms
equipped with soft-thresholding [ANW12] or hard-thresholding [BD09, JTK14, SL17, YLZ18, LB18]
have linear convergence rate, and achieve known minimax lower bounds in statistical estimation
[RWY11, ZWJ14].

Given samples S, running ERM on the entire input dataset: minβ∈B,‖β‖0≤k Ei∈uS `i(β; zi), can-
not guarantee uniform convergence of the empirical risk, and can be arbitrarily bad for ε-corrupted
samples. The next two sections outline the main results of this paper, addressing this problem.

3 Robust sparse estimation via Robust Hard Thresholding

We introduce our meta-algorithm, Robust Hard Thresholding, that essentially uses a robust gradient
estimator to run IHT. We require several definitions to specify the algorithm, and describe its results.
We use Ĝ(β) as a placeholder for the estimate at β, obtained from whichever robust gradient estimator

we are using. Let G(β) = Ezi∼P ∇`i(β; zi) denote the population gradient. We use Ĝ and G when
the context is clear.

Many previous works ([CSX17, HI17, PSBR18, DKK+18, YCRB18a, YCRB18b, SX18]) have
provided algorithms for obtaining robust gradient estimators, then used as subroutines in robust
gradient algorithms. However, those results require controlling ‖Ĝ−G‖2, and do not readily extend

to high dimensions, as sufficiently controlling ‖Ĝ −G‖2 seems to require n = Ω(d). A recent work
[LSLC18] on robust sparse linear regression uses a robust sparse mean estimator [BDLS17] to guarantee

‖Ĝ − G‖2 = O(δ1‖β − β∗‖2 + δ2) with sample complexity Ω(k2 log(d)). However, their algorithm
requires the restrictive assumption Σ = Id or sparse, and thus cannot be extended to more general
M -estimation problems.

To address this issue, we propose Robust Hard Thresholding (Algorithm 1), which uses hard
thresholding after each robust gradient update2. In line 7, we use a gradient estimator to obtain
the robust gradient estimate Ĝt. In line 8, we update the parameter by hard thresholding βt+1 =
Pk′(β

t − ηĜt), where the hyper-parameter k′ proportional to k is specified in Definition 2.3. A key
observation in line 8 is that, in each step of IHT, the iterate βt is sparse, and thus the perturbation
from outliers or heavy tails only depends on IHT’s sparsity k′ instead of the ambient dimension d.
Based on a careful analysis of the hard thresholding operator in each iteration, we show that rather
than controlling ‖Ĝ−G‖2, it is enough to control a weaker quantity: this is what we call the Robust

2Our theory requires splitting samples across different iterations to maintain independence between iterations. We
believe this is an artifact of the analysis, and do not use this in our experiments. [BWY17, PSBR18] use a similar
approach for theoretical analysis.
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Algorithm 1 Robust Hard Thresholding

1: Input: Data samples {yi,xi}Ni=1, gradient estimator Ĝ.

2: Output: The estimation β̂.
3: Parameters: Hard thresholding parameter k′ = 4ρ2k.

4: Split samples into T subsets each of size n. Initialize with β0 = 0d.
5: for t = 0 to T − 1, do
6: At current βt, calculate all gradients for current n samples: gti = ∇`i(βt), i ∈ [n].

7: For {gti}ni=1, we obtain Ĝt

8: Update the parameter: βt+1 = Pk′
(
βt − ηĜt

)
. Then project: βt+1 = ΠB(βt+1).

9: end for
10: Output the estimation β̂ = βT .

Descent Condition Definition 3.1 and we define it next; it plays a key role in obtaining sharp rates of
convergence for various types of statistical models.

Robust Descent Condition

The Robust Descent Condition eq. (1) provides an upper bound on the inner product of the robust
gradient estimate and the distance to the population optimum. This is a natural notion to control
the potential progress obtained by using a robust gradient update instead of the population gradient.

Definition 3.1 ((α,ψ)-Robust Descent Condition (RDC)). For the population gradient G at β, a

robust gradient estimator Ĝ(β) satisfies the robust descent condition if for any sparse β, β̃ ∈ Rd,∣∣∣〈Ĝ(β)−G(β), β̃ − β∗
〉∣∣∣ ≤ (α‖β − β∗‖2 + ψ

)∥∥∥β̃ − β∗∥∥∥
2
. (1)

We begin with a Meta-Theorem for Algorithm 1 that holds under the Robust Descent Condition
Definition 3.1 and assumptions on population risk Definition 2.3. In Theorem 3.1, we prove Algo-
rithm 1’s global convergence and its statistical guarantees. The proofs are collected in Appendix B.

Theorem 3.1 (Meta-Theorem). Suppose we observe samples from a statistical model with popula-
tion risk f satisfying Definition 2.3. If a robust gradient estimator satisfies (α,ψ)-Robust Descent

Condition (Definition 3.1) where α ≤ 1
32µα, then Algorithm 1 with η = 1/µL outputs β̂ such that

‖β̂ − β∗‖2 = O(ψ/µα), by setting T = O (ρ log (µα‖β∗‖2/ψ)).

We note that Theorem 3.1 is deterministic in nature. In the sequel, we omit the log term in the
sample complexity due to sample splitting. We obtain high probability results via certifying that
the RDC holds for certain robust gradient estimators under various statistical models. To obtain the
minimax estimation error rate in Theorem 3.1, the key step is providing a robust gradient estimator
with sufficiently small ψ, in the definition of RDC.

Section 4 uses the RDC and Theorem 3.1 to obtain new results for sparse regression under heavy
tails or arbitrary corruption. Before we move to this, we observe that we can use the RDC and
Theorem 3.1 to recover existing results in the literature. Some immediate examples are as follows:

Uncorrupted gradient satisfies the RDC. Suppose the samples follow from sparse linear
regression with sub-Gaussian covariates and noise N (0, σ2). The empirical average of gradient samples

satisfies eq. (1) with ψ = O(σ
√
k log(d)/n), by assuming `1 constraint on β and β̃ [LW11]. Plugging

in this ψ to Theorem 3.1 recovers the well-known minimax rates for sparse linear regression [RWY11].
RSGE implies RDC. When Σ = Id or is sparse, [BDLS17] and [LSLC18], respectively, provide

robust sparse gradient estimators (RSGE) which upper bound ‖Ĝ(β) −G(β)‖2 ≤ α‖β − β∗‖2 + ψ,

for a constant fraction ε of corrupted samples. Noting that |〈Ĝ(β)−G(β), β̃ − β∗〉| ≤ ‖Ĝ(β) −
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G(β)‖2‖β̃−β∗‖2, we observe that RSGE implies RDC. Hence any RSGE can be used in Algorithm 1.
The RSGE for Σ = I in [BDLS17] guarantees an RDC with ψ = O(σε) when n = Ω(k2 log d/ε2), and
the RSGE for unknown sparse Σ from [LSLC18] guarantees ψ = O(σ

√
ε) when n = Ω(k2 log d/ε).

Again plugging these values for ψ into our theorem, recovers the results in those papers. 3

4 Main Results: Using the RDC and Algorithm 1

In the remainder of our paper, we use Theorem 3.1 and the RDC to analyze two well-known and com-
putationally efficient robust mean estimation subroutines that have been used in the low-dimensional
setting: the trimmed mean estimator and the MOM estimator. We show that these two can obtain a
sufficiently small ψ in the definition of the RDC. This leads to the minimax estimation error in the
case of arbitrary corruptions or heavy tails.

4.1 Gradient estimation

The trimmed mean and MOM estimators have been successfully applied to robustify gradient descent
[YCRB18a, PSBR18] in the low dimensional setting. They have not been used in the high dimensional
regime, however, because until now we have not had the machinery to analyze their algorithmic
convergence, statistical rates and minimax optimality in the high dimensional setting.

To show they satisfy the RDC with a sufficiently small ψ, we observe that by using Hölder’s
inequality on the LHS of eq. (1), we have |〈Ĝ(β)−G(β), β̃ − β∗〉| ≤ ‖Ĝ(β)−G(β)‖∞‖β̃ − β∗‖1.
Using Algorithm 1, the Hard Thresholding step enforces sparsity of β̃ − β∗. Therefore, controlling ψ
amounts to bounding the infinity norm of the robust gradient estimate.

In Section 4.2, we show that by using coordinate-wise robust mean estimation, we can certify the
RDC with sufficiently small ψ to guarantee minimax rates. Specifically, we show this for the trimmed
gradient estimator for arbitrary corruption, and and the MOM gradient estimator for heavy tailed
distributions.

Definition 4.1. Given gradients samples {∇`i(β; zi) ∈ Rd, i ∈ S}, for each dimension j ∈ [d],
(♠): Trimmed gradient estimator removes the largest and smallest α fraction of elements in

{[∇`i(β; zi)]j ∈ R, i ∈ S}, and calculates the mean of the remaining terms. We choose α = c0ε for
constant c0 ≥ 1, and require α ≤ 1/2− c1 for a small constant c1 > 0.

(♣): MOM gradient estimator partitions S into 4.5dlog(d)e blocks and computes the sample
mean of {[∇`i(β; zi)]j ∈ R} within each block, and then take the median of these means.4

4.2 Statistical guarantees

In this section, we consider some typical models for general M -estimation.

Model 4.1 (Sparse linear regression). Samples zi = (yi,xi) are drawn from a linear model P : yi =
x>i β

∗ + ξi, with β∗ ∈ Rd being k-sparse. We assume that x’s are i.i.d. with normalized covariance
matrix Σ, with Σjj ≤ 1 ∀j, and the stochastic noise ξ has mean 0 and variance σ2.

Model 4.2 (Sparse logistic regression). Samples zi = (yi,xi) are drawn from a binary classifica-
tion model P , where the binary label yi ∈ {−1,+1} follows the conditional probability distribution
Pr(yi|xi) = 1/(1 + exp(−yix>i β∗)), with β∗ ∈ B ⊂ Rd being k-sparse. We assume that x’s are i.i.d.
with normalized covariance matrix Σ, where Σjj ≤ 1 for all j.

To obtain the following corollaries, we first certify the RDC for a certain robust gradient estimator
over random ensembles with corruption or heavy tails, and then use them in Theorem 3.1. We collect
the results for gradient estimation in Appendix A, and the proofs for corollaries in Appendix B.

3It remains an open question to obtain a RSGE for a constant fraction of outliers for robust sparse regression with
arbitrary covariance Σ.

4Without loss of generality, we assume the number of blocks divides n, and 4.5dlog(d)e is chosen in [HS16].
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Arbitrary corruption case. Based on Theorem 3.1, we first provide concrete results for arbitrary
corruption case Definition 2.1, where the covariates and response variables in the authentic distribution
P are assumed to be sub-Gaussian.

Corollary 4.1. Suppose we observe n ε-corrupted (Definition 2.1) sub-Gaussian samples from sparse

linear regression model (Model 4.1). Under the condition n = Ω
(
ρ4k log d

)
, and ε = O

(
1

ρ2
√
k log(nd)

)
,

with probability at least 1− d−2, Algorithm 1 with trimmed gradient estimator satisfies the RDC with
ψ = O(ρσ

√
k(ε log(nd)+

√
log d/n)), and thus Theorem 3.1 provides ‖β̂−β∗‖2 = O(ρ2σ(ε

√
k log(nd)+√

k log d/n)).

Time complexity. Corollary 4.1 has a global linear convergence rate. In each iteration, we only
use O(nd log n) operations complexity to calculate trimmed mean. We incur logarithmic overhead
compared to normal gradient descent [Bub15].

Statistical accuracy and robustness. Compared with [CCM13, BDLS17], our statistical error rate
is minimax optimal [RWY11, ZWJ14], and has no dependencies on ‖β∗‖2. Furthermore, the upper
bound on ε is nearly independent of d, which guarantees Algorithm 1’s robustness in high dimensions.

Corollary 4.2. Suppose we observe n ε-corrupted (Definition 2.1) sub-Gaussian samples from sparse
logistic regression model (Model 4.2). With probability at least 1 − d−2, Algorithm 1 with trimmed
gradient estimator satisfies the RDC with ψ = O(ρ

√
k(ε log(nd) +

√
log d/n)), and thus Theorem 3.1

provides ‖β̂ − β∗‖2 = O(ρ2(ε
√
k log(nd) +

√
k log d/n)).

Statistical accuracy and robustness. Under the sparse Gaussian linear discriminant analysis model
(a typical example of Model 4.2), Algorithm 1 achieves the statistical minimax rate [LPR15, LYCR17].

Heavy-tailed distribution case. We next turn to the heavy tailed distribution case Definition 2.2.

Corollary 4.3. Suppose we observe n samples from sparse linear regression model (Model 4.2) with
bounded 4-th moment covariates. Under the condition n = Ω

(
ρ6k log d

)
, with probability at least

1− d−2, Algorithm 1 with MOM gradient estimator satisfies the RDC with ψ = O(ρ3/2σ
√
k log d/n),

and thus Theorem 3.1 provides ‖β̂ − β∗‖2 = O(ρ5/2σ
√
k log d/n).

Time complexity. Similar to Corollary 4.1, Corollary 4.3 has a global linear convergence. In each
iteration, we only use O(nd) operations complexity – the same as normal gradient descent [Bub15].

Statistical accuracy. [LM16] uses Median-of-Means tournaments to deal with sparse linear regres-
sion with bounded moment assumptions for the covariates, and they obtain near optimal rates. We
obtain similar rates, however our algorithm is efficient, where as Median-of-Means tournaments is
not known to be computationally tractable. [FWZ16, Zhu17] deal with the same problem by trun-
cating and shrinking the data to certify the RSC condition. Their results require boundedness of
higher moments of the noise ξ, and the final error depends on ‖β∗‖2. Our estimation error bounds
exactly recover optimal sub-Gaussian bounds for sparse regression [NRWY12, Wai19], and moreover,
we obtain exact recovery when ξ’s variance σ2 → 0.

Corollary 4.4. Suppose we observe n samples from sparse logistic regression model (Model 4.2).
With probability at least 1 − d−2, Algorithm 1 with MOM gradient estimator satisfies the RDC with
ψ = O(ρ3/2

√
k log d/n), and thus Theorem 3.1 provides ‖β̂ − β∗‖2 = O(ρ5/2

√
k log d/n).

4.3 Sparsity recovery and Gaussian graphical model estimation

We next demonstrate the sparsity recovery performance of Algorithm 1 for graphical model learning
[MB06, Wai09, RWL10, RWRY11, BvdG11, HTW15]. Our sparsity recovery guarantees hold for both
heavy tails and arbitrary corruption, though we only present results in the case of arbitrary corruption
in this section.
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We use supp(v, k) to denote top k indexes of v with the largest magnitude. Let vmin denote the
smallest absolute value of nonzero element of v. To control the false negative rate, Corollary 4.5 shows
that under the βmin-condition, supp(β̂, k) is exactly supp(β∗). The proofs are given in Appendix C.
Sparsity recovery guarantee for sparse logistic regression is similar, and is omitted due to space con-
straints. Existing results on sparsity recovery for `1 regularized estimators [Wai09, LSRC15] do not
require the RSC condition, but instead require an irrepresentability condition, which is stronger. If
ε→ 0, Corollary 4.5 has the same βmin-condition as IHT for sparsity recovery [YLZ18].

Corollary 4.5. Under the same condition as in Corollary 4.1, and a βmin-condition on β∗, β∗min =

Ω(ρ2σ(ε
√
k log(nd) +

√
k log d/n)), Algorithm 1 with trimmed gradient estimator guarantees that

supp(β̂, k) = supp(β∗), with probability at least 1− d−2.

We consider sparse precision matrix estimation for Gaussian graphical models. The sparsity pat-
tern of its precision matrix Θ = Σ−1 matches the conditional independence relationships [KFB09,
WJ08].

Model 4.3 (Sparse precision matrix estimation). Under the contamination model Definition 2.1,
authentic samples {xi}mi=1 are drawn from a multivariate Gaussian distribution N (0,Σ). We assume
that each row of the precision matrix Θ = Σ−1 is (k + 1)-sparse – each node has at most k edges.

For the uncorrupted samples drawn from the Gaussian graphical model, the neighborhood selection
(NS) algorithm [MB06] solves a convex relaxation of the following sparsity constrained optimization
to regress each variable against its neighbors

β̂j = arg min
β∈Rd−1

1

m

m∑
i=1

(xij − x>i(j)β)2, s.t. ‖β‖0 ≤ k, for each j ∈ [d], (2)

where xij denotes the j-th coordinate of xi ∈ Rd, and (j) denotes the index set {1, · · · , j − 1, j +

1, · · · , d}. Let θ(j) ∈ Rd−1 denote Θ’s j-th column with the diagonal entry removed. and Θj,j ∈ R
denote the j-th diagonal element of Θ. Then, the sparsity pattern of θ(j) can be estimated through

β̂j . Details on the connection between θ(j) and β̂j are given in Appendix C.
However, given ε-corrupted samples from the Gaussian graphical model, this procedure will fail

[LHY+12b, WG17]. To address this issue, we propose Robust NS (Algorithm 2 in Appendix C), which
robustifies Neighborhood Selection [MB06] by using Robust Hard Thresholding (with least square loss)
to robustify eq. (2). Similar to Corollary 4.5, a θmin-condition guarantees consistent edge selection.

Corollary 4.6. Under the same condition as in Corollary 4.1, and a θmin-condition for θ(j), θ(j),min =

Ω(Θ
1/2
j,j ρ

2(ε
√
k log(nd) +

√
k log d/n)), Robust NS (Algorithm 2) achieves consistent edge selection,

with probability at least 1− d−1.

Similar to Corollary 4.1, the fraction ε is nearly independent of dimension d, which provides
guarantees of Robust NS in high dimensions. Other Gaussian graphical model selection algorithms
include GLasso [FHT08], CLIME[CLL11]. The experimental details comparing robustified versions of
these algorithms are presented in Appendix D.4.

5 Experiments

We provide the complete details for our experiment setup in Appendix D.
Sparse regression with arbitrary corruption. We generate samples from a sparse regression

model (Model 4.1) with a Toeplitz covariance Σ. Here, the stochastic noise ξ ∼ N (0, σ2), and we
vary the noise level σ2 in different simulations. We add outliers with ε = 0.1, and track the parameter
error ‖βt − β∗‖2 in each iteration. Left plot of Figure 1 shows Algorithm 1’s linear convergence, and
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Figure 1: In the left plot, the corruption level ε is
fixed and we use Algorithm 1 with trimming for different
noise level σ2. In the right plot, we consider log-normal
samples, and we use Algorithm 1 with MOM for different
sample size to compare with baselines (Lasso on heavy
tailed data, and Lasso on sub-Gaussian data).

(a) Graph estimated by Al-
gorithm 2.

(b) Graph estimated by
Vanilla NS approach.

Figure 2: Graph estimated from the S&P 500 stock
data by Algorithm 2 and Vanilla NS approach. Variables
are colored according to their sectors. In particular, the
stocks from sector Information Technology are colored as
purple.

the error curves flatten out at the final error level. Furthermore, Algorithm 1 can achieve machine
precision when σ2 = 0, which means exactly recovering of β∗.

Sparse regression with heavy tails. We consider a log-normal distribution (a typical example

of heavy tails) in Model 4.1. More specifically, xi =
√

Σx̃i, and ξi = σξ̃i. Here, Σ is the same Toeplitz

covariance, each entry of x̃i and ξ̃i follows from (Z − EZ)/
√

Var(Z), where Z ∼ logN (0, 4). We fix
k, d, σ, and vary sample size n. For log-normal samples, we run Algorithm 1 with MOM and vanilla
Lasso. We then re-generate standard Gaussian samples using the same dimensions with Σ and run
Vanilla Lasso. Each curve in the right plot of Figure 1 is the average of 50 trials. Algorithm 1 with
MOM significantly improves vanilla Lasso on log-normal data, and has the same performance as Lasso
on sub-Gaussian data

Real data experiments. We next apply Algorithm 2, to a US equities dataset [LHY+12a,
ZLR+12], which is heavy-tailed and has many outliers [dP18]. The dataset contains 1,257 daily
closing prices of 452 stocks (variables). It is well known that stocks from the same sector tend to be
clustered together [Kin66]. Therefore, we use Robust NS (Algorithm 2) to construct an undirected
graph among stocks. Graphs estimated by different algorithms are shown in Figure 2. We can see
that stocks from the same sector are clustered together, and these clustering centers can be easily
identified. We also compare Algorithm 2 to the baseline NS approach (as in the ideal setting). We
can observe that stocks from Information Technology (colored by purple) are much better clustered
by Algorithm 2.
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Notations in Appendix. In our proofs, the exponent −10 in tail bounds is arbitrary, and can be

changed to other larger constant without affecting the results. {cj}3j=0 denote universal constants,

and they may change line by line.

A Proofs for the gradient estimators

In Robust Hard Thresholding (Algorithm 1), we use trimmed gradient estimator or MOM gradient

estimator. And in Theorem 3.1, the key quantity to control the statistical rates of convergence is the

Robust Descent Condition (Definition 3.1).

By Holder inequality, we have∣∣∣〈Ĝ(β)−G(β), β̃ − β∗
〉∣∣∣ ≤ ∥∥∥Ĝ(β)−G(β)

∥∥∥
∞

∥∥∥β̃ − β∗∥∥∥
1
.

In this section, we provide one direct route for obtaining upper bound of Robust Descent Condition

via bounding the infinity norm of the robust gradient estimate (Proposition A.1 and Proposition A.2).

Later, in Appendix B, we will leverage Proposition A.1 and Proposition A.2 in verifying the Ro-

bust Descent Condition for trimmed/MOM gradient estimator under sparse linear/logistic regression.

Together with Theorem 3.1, this will complete Corollary 4.1 – Corollary 4.4.

Proposition A.1. Suppose we observe n ε-corrupted sub-Gaussian samples (Definition 2.1). With

probability at least 1− d−3, the coordinate-wise trimmed gradient estimator can guarantee

• ‖Ĝ−G‖∞ = O

(√
‖β − β∗‖22 + σ2

(
ε log(nd) +

√
log d/n

))
for sparse linear regression (Model 4.1).

• ‖Ĝ−G‖∞ = O
(
ε log(nd) +

√
log d/n

)
for sparse logistic regression (Model 4.2).

Proposition A.2. Suppose we observe n samples from the heavy tailed model with bounded 4-th

moment covariates. With probability at least 1 − d−3, the coordinate-wise Median of Means gradient

estimator can guarantee

• ‖Ĝ−G‖∞ = O

(√
ρ2‖β − β∗‖22 + ρσ2

√
log d/n

)
for sparse linear regression;

• ‖Ĝ−G‖∞ = O
(√

ρlog d/n
)

for sparse logistic regression.

A.1 Proofs for the MOM gradient estimator

We first prove Proposition A.2. Proposition A.1 of trimmed gradient estimator for ε-corrupted sub-

Gaussian samples has the same dependency on ‖β − β∗‖2. The proof of Proposition A.1 leverages

standard concentration bound for sub-Gaussian samples, and then uses trimming to control the effect

of outliers.

Proof of Proposition A.2. For `2 loss function, we have g(β) = x(x>β − y), where we omit the

subscript i in the proof. We denote ∆ := β − β∗, and bound the operator norm of the covariance of
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gradient samples∥∥E(g −G)(g −G)>
∥∥

op
≤
∥∥E((xx> −Σ)∆∆>(xx> −Σ))

∥∥
op

+
∥∥E(ξ2xx>)

∥∥
op

≤ sup
v1∈Sd−1

v>1 E((xx> −Σ)∆∆>(xx> −Σ))v1 + σ2 ‖Σ‖op

≤ sup
v1∈Sd−1

〈
∆∆>,E(xx> −Σ)v1v

>
1 (xx> −Σ)

〉
+ σ2 ‖Σ‖op

(i)

≤ ‖∆‖22 sup
v1,v2∈Sd−1

E(v>2 (xx> −Σ)v1)2 + σ2 ‖Σ‖op

≤ 2‖∆‖22 sup
v1,v2∈Sd−1

(E(v>2 (xx>)v1)2 + ‖Σ‖2op) + σ2 ‖Σ‖op

≤ 2‖∆‖22 sup
v1,v2∈Sd−1

(
√

E(v>2 x)4 E(x>v1)4 + ‖Σ‖2op) + σ2 ‖Σ‖op

(ii)

≤ 2(C4 + 1) ‖Σ‖2op ‖∆‖
2
2 + σ2 ‖Σ‖op ,

where (i) follows from the Holder inequality, and (ii) follows from the 4-th moment bound assumption.

Hence, by using coordinate-wise Median of Means gradient estimator, we have

sup
v∈Sd−1

v>(Ĝ−G)
(i)
= O

(√
‖Cov(g)‖op log d/n

)
= O

(√
ρ2‖β − β∗‖22 + ρσ2

√
log d/n

)
with probability at least 1 − d−4, where (i) follows from Proposition 5 in [HS16]. Applying union

bounds on all d indexes, we have ‖Ĝ−G‖∞ = O

(√
ρ2‖β − β∗‖22 + ρσ2

√
log d/n

)
with probability

at least 1− d−3.

For logistic loss, the gradient can be computed as: g = −yx
1+exp(yx>β)

, where we omit the subscript

i in the proof.

Since y ∈ {−1,+1}, and 1 + exp
(
yx>β

)
≥ 1, we directly have ‖E(g −G)(g −G)>‖op ≤ ‖Σ‖op .

Similar to the case of `2 loss, we have ‖Ĝ−G‖∞ = O
(√

ρlog d/n
)

, with probability at least 1−d−3.

A.2 Proofs for the trimmed gradient estimator

We then turn to the trimmed gradient estimator for the case of arbitrary corruption. Before we

proceed to the trimmed estimator, let us first visit the definition and tail bounds of sub-exponential

random variable, as it will be used in sparse linear regression, where the gradient’s distribution is

indeed sub-exponential under the sub-Gaussian assumptions in Model 4.1.

We first present standard concentration inequalities ([Wai19]).

Definition A.1 (Sub-exponential random variables). A random variable X with mean µ is sub-

exponential if there are non-negative parameters ν such that

E[exp (t (X − µ))] ≤ exp

(
ν2t2

2

)
, for all |t| < 1

ν
.
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Lemma A.1 (Bernstein’s inequality). Suppose that Xi, i = 1, · · · , n, are i.i.d. sub-exponential ran-

dom variables with parameters ν. Then

Pr
(

1
n

∑n
i=1Xi ≥ µ+ t

)
≤


exp

(
−nt

2

2ν2

)
if 0 ≤ t ≤ ν, and

exp

(
−nt

2ν

)
for t > ν.

We also have a two-sided tail bound

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−nmin

(
t2

2ν2
,
t

2ν

))
.

We define α-trimmed mean estimator for one dimensional samples, and denote it as trmeanα(·).

Definition A.2 (α-trimmed mean estimator). Given a set of ε-corrupted samples {zi ∈ R, i ∈ S},
the coordinate-wise trimmed mean estimator trmeanα(·) removes the largest and smallest α fraction

of elements in {zi ∈ R, i ∈ S}, and calculate the mean of the remaining terms. We choose α = c0ε,

for a constant c0 ≥ 1. We also require that α ≤ 1/2− c1, for some small constant c1 > 0.

Lemma A.2 shows the guarantees for this robust gradient estimator in each coordinate. We note

that Lemma A.2 is stronger than guarantees for trimmed mean estimator (Lemma 3) in [YCRB18a].

In our contamination model Definition 2.1, the adversary may delete ε-fraction of authentic samples,

and then add arbitrary outliers. And Lemma A.2 provides guarantees for trimmed mean estimator

on sub-exponential random variables. The trimmed mean estimator is robust enough, that it allows

the adversary to arbitrarily remove ε-fraction of data points. We use Gj to denote the R1 samples at

the j-th coordinate of G. We can also define Sj in the same way.

Lemma A.2. Suppose we observe n = Ω(log d) ε-corrupted samples from Definition 2.1. For each

dimension j ∈ {1, 2, · · · , d}, we assume the samples in Gj are i.i.d. ν-sub-exponential with mean µj.

After the contamination, we have the j-th R1 samples as Sj. Then, we can guarantee the trimmed

mean estimator on j-th dimension that

∣∣trmeanα{xi : i ∈ Sj} − µj
∣∣ = O

(
ν

(
ε log(nd) +

√
log d

n

))

with probability at least 1− d−4.

We leave the proof of Lemma A.2 at the end of this section. Then, we present analysis of trimmed

gradient estimator for sparse linear regression and sparse logistic regression by using Lemma A.2. For

sparse linear regression model with sub-Gaussian covariates, the distribution of authentic gradients

are sub-exponential instead of sub-Gaussian. More specifically, we first prove that when the current

parameter iterate is β, the sub-exponential parameter of all authentic gradient is O((‖∆‖22 + σ2)1/2),

where ∆ := β − β∗.
To gain some intuition for this, we can consider the sparse linear equation problem, where σ2 = 0.

When β = β∗(‖∆‖22 = 0), we exactly recover β∗, and all stochastic gradients of authentic samples are

actually zero vectors, as all observations are noiseless. It is clear that we will have sub-exponential

parameter as 0.
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Proof of Proposition A.1. For any β, the gradient for one sample can be written as

g = x
(
x>β − y

)
, and G = E(g) = Σ (β − β∗) ,

where we omit the subscript i in the proof. For any fixed standard basis vector v ∈ Sd−1, and define

∆ = β − β∗, we have

v>g = v>xx>∆− v>xξ, and v>G = v>Σ∆. (4)

To characterize the tail bounds of v>g, we study the moment generating function:

E[exp
(
t
(
v>g − v>G

))
] = E[exp

(
t
(
v>
(
xx> −Σ

)
∆− v>xξ

))
].

We denote γ ∈ {−1,+1} as a Rademacher random variable, which is independent of x and ξ. Then

we can use a standard symmetrization technique [Wai19],

Ex,ξ[exp
(
t
(
v>
(
xx> −Σ

)
∆− v>xξ

))
] ≤ Ex,ξ,γ [exp

(
2tγ

(
v>xx>∆− v>xξ

))
]

(i)
=

∞∑
k=0

1

k!
(2t)

k E[γk
(
v>xx>∆− v>xξ

)k
]

(ii)
= 1 +

∞∑
l=1

1

(2l)!
(2t)

2l E[
(
v>x

)2l (
x>∆− ξ

)2l
],

where (i) follows from the exponential function’s power series expansion, and (ii) follows from the

independence of γ, together with the fact that all odd moments of the γ terms have zeros means.

By the Cauchy-Schwarz inequality, we have

E[
(
v>x

)2l (
x>∆− ξ

)2l
] ≤

√
E[(v>x)

4l
]E[(x>∆− ξ)4l

].

It is clear that ξ is a sub-Gaussian random variable with parameter σ. Since x ∼ N (0,Σ), we

have v>x ∼ N
(
0,v>Σv

)
. For any fixed standard basis vector v ∈ Sd−1, we can conclude that v>x

is sub-Gaussian with parameter at most 1 based on Model 4.1. By basic properties of sub-Gaussian

random variables [Wai19], we have

√
E[(v>x)

4l
] ≤

√
(4l)!

22l (2l)!

(√
8e
)2l

√
E[(x>∆− ξ)4l

]
(i)

≤

√
(4l)!

22l (2l)!

(
8e2
(
‖∆‖22 + σ2

))l
,

where (i) follows from the fact that x>∆ − ξ is the weighted summation of two independent sub-
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Gaussian random variables. Hence, we have

E[exp
(
t
(
v>g − v>G

))
] ≤ 1 +

∞∑
l=1

1

(2l)!
(2t)

2l (4l)!

22l (2l)!

(√
8e
)4l (

‖∆‖22 + σ2
)l

(i)

≤ 1 +

∞∑
l=1

(4t)
2l
(√

8e
)4l (

‖∆‖22 + σ2
)l

= 1 +

∞∑
l=1

(4t)
2l (

8e2
)2l(√‖∆‖22 + σ2

)2l

, (5)

where (i) follows from (4l)! ≤ 24l ((2l)!)
2

(proof by mathematical induction). When we have f (t) =

32te2
√
‖∆‖22 + σ2 < 1, eq. (5) converges to 1

1−f2(t) . Hence,

E[exp
(
t
(
v>g − v>G

))
] ≤ 1

1− f2 (t)
≤ exp

(
f2 (t)

)
.

That being said, v>g is a sub-exponential random variable. By choosing v as each coordinate in Rd,
each coordinate of gradient has sub-exponential parameter as 32

√
2e2
√
‖∆‖22 + σ2.

Then, applying Lemma A.2 on this collection of corrupted sub-exponential random variables, we

have ∣∣trmeanα{xi : i ∈ Sj} − µj
∣∣ = O

(√
‖∆‖22 + σ2

(
ε log(nd) +

√
log d

n

))
, (6)

with probability at least 1− d−4.

Applying union bounds on eq. (6) for all d indexes, we have

∥∥∥Ĝ−G∥∥∥
∞

= O

(√
‖∆‖22 + σ2

(
ε log(nd) +

√
log d

n

))
,

with probability at least 1− d−3.

In this subsection, we use Lemma A.2 to bound ‖Ĝ − G‖∞ for sparse logistic regression. The

technique for sparse logistic regression is similar to linear regression. Since we can directly show

the sub-Gaussian distribution of gradient in this case, applying Lemma A.2 leads to the bound for

‖Ĝ−G‖∞.

Under the statistical model of sparse logistic regression, the gradient can be computed as:

g =
−yx

1 + exp (yx>β)
,

where we omit the subscript i in the proof.

Since y ∈ {−1,+1}, and 1 + exp
(
yx>β

)
≥ 1, then for any fixed standard basis vector v ∈ Sd−1,

v>g is sub-Gaussian with parameter at most 1 based on Model 4.2. Notice that ν-sub-Gaussian

random variables are still ν-sub-exponential. Applying Lemma A.2 again, we have

∣∣trmeanα{xi : i ∈ Sj} − µ
∣∣ = O

(
ε log(nd) +

√
log d

n

)
(7)
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with probability at least 1− d−4.

Applying union bounds on eq. (7) for all d indexes, we have

∥∥∥Ĝ−G∥∥∥
∞

= O

(
ε log(nd) +

√
log d

n

)

with probability at least 1− d−3.

A.3 Trimmed mean estimator for strong contamination model

Now, it only remains to prove Lemma A.2. The proof technique is as follow: even though an adversary

may delete samples from Gj , we can still show the concentration inequalities for remaining authentic

R1 samples (denoting as G̃j in the proof). Then, we show that by using trimmed mean estimator,

either the abnormal outliers will be removed, or their effect is controlled.

Proof of Lemma A.2. Without loss of generality, we assume µ = 0 throughout the proof.

For each dimension j ∈ {1, 2, · · · , d}, we can split the j-th one-dimensional samples as Sj =

G̃j
⋃
Bj . To study the performance of trmeanα{xi : i ∈ Sj}, we first show a concentration inequality

of the sub-exponential variables in G̃j , without worrying about removing points from Gj . This part

of our proof is similar to Lemma 4.5 in [DKK+16].

Concentration inequality for G̃j We consider the set {xi : i ∈ Gj} in R1. Since G̃j is a subset of

Gj , by triangle inequality we have,

∣∣∣Ei∈uG̃j xi∣∣∣ =

∣∣∣∣
∑
i∈G̃j xi

(1− ε)n

∣∣∣∣ ≤ ∣∣∣∣∑i∈Gj xi

(1− ε)n

∣∣∣∣︸ ︷︷ ︸
A1

+

∣∣∣∣∣
∑
i∈Gj\G̃j xi

(1− ε)n

∣∣∣∣∣︸ ︷︷ ︸
A2

.

The first term A1 is simply the average of i.i.d. sub-exponential random variables. By Lemma A.1,

we have

Pr

(∣∣∣∣
∑
i∈G̃j xi

(1− ε)n

∣∣∣∣ ≥ c0ν
√

log d

n

)
≤ 2 exp

(
−c1nmin

(√
log d

n
,

log d

n

))
≤ c2d−10.

(8)

(9)

For the second term A2, We now wish to show that with probability 1− τ , there does not exist a

subset G̃j so that the A2 is more than δ0. This event is equivalent to∣∣∣∣∣
∑
i∈Gj\G̃j xi

(1− ε)n

∣∣∣∣∣ =

∣∣∣∣∣
∑
i∈Gj\G̃j xi

εn

∣∣∣∣∣ ε

1− ε
≥ δ0

Let δ1 = 1−ε
ε δ0. For one subset Gj \ G̃j , by Lemma A.1, we have

Pr

(∣∣∣∣∣
∑
i∈Gj\G̃j xi

εn

∣∣∣∣∣ ≥ δ1
)
≤ 2 exp

(
−εnmin

(
δ2
1

2ν2
,
δ1
2ν

))
.
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Then, we take union bounds over all possible Gj\G̃j , which have
(
n
εn

)
events. Hence, the tail probability

of A2 can be bounded as

τ ≤ 2

(
n

εn

)
exp

(
−εnmin

(
δ2
1

2ν2
,
δ1
2ν

))
(i)

≤ c0 exp

(
nH(ε)− εnmin

(
δ2
1

2ν2
,
δ1
2ν

))
(10)

where (i) follows from the fact that log
(
n
εn

)
= O(nH(ε)) for n large enough, and H(·) is the bi-

nary entropy function. Choosing δ1 = c1ν log(nd), and hence δ0 = c1νε log(nd), we have τ ≤
c0 exp(−c2nε log(nd)) ≤ c3d−10.

Combining the analysis on A1 and A2 (eq. (9) and eq. (10)), we have

Pr

(∣∣∣Ei∈uG̃j xi∣∣∣ ≥ ν
(
c0

√
log d

n
+ c1ε log(nd)

))
≤ c2d−10. (11)

This completes the concentration bounds on
∣∣∣Ei∈uG̃j xi∣∣∣ for all possible samples in G̃j without worrying

about sample removing.

Trimmed mean estimator for Sj Then, we can consider the contribution of each part in Sj =

G̃j
⋃
Bj . We denote the remaining set after trimming as Rj , and the trimmed set as T j . Recall that

we assume µ = 0, we only need to bound
∣∣trmeanα{xi : i ∈ Sj}

∣∣, which is the empirical average of all

samples in the remaining set {xi : i ∈ Rj}.
As Rj can be easily separated by the union of two distinct set Bj

⋂
Rj and G̃j

⋂
Rj , we have the

following inequalities,

∣∣trmeanα{xi : i ∈ Sj}
∣∣ =

∣∣∣∣∣ 1

(1− 2α)n

∑
i∈Rj

xi

∣∣∣∣∣
≤ 1

(1− 2α)n

∣∣∣∣∣∣
∑
i∈G̃j

xi −
∑

i∈G̃j
⋂
T j

xi +
∑

i∈Bj
⋂
Rj
xi

∣∣∣∣∣∣

≤ 1

(1− 2α)n


∣∣∣∣∣∣
∑
i∈G̃j

xi

∣∣∣∣∣∣︸ ︷︷ ︸
B1

+

∣∣∣∣∣∣
∑

i∈G̃j
⋂
T j

xi

∣∣∣∣∣∣︸ ︷︷ ︸
B2

+

∣∣∣∣∣∣
∑

i∈Bj
⋂
Rj
xi

∣∣∣∣∣∣︸ ︷︷ ︸
B3


For any i ∈ G̃j , by Lemma A.1, we have

Pr (|xi| ≥ c0ν log(nd)) ≤ 2 exp
(
−c1 min

(
log(nd), log2(nd)

))
.

Applying a union bound for all samples, we can control the maximum magnitude for any i ∈ G̃j ,

Pr

(
max
i∈G̃j
|xi| ≥ c0ν log(nd)

)
≤ 2(1− ε)n exp

(
−c1 min

(
log(nd), log2(nd)

))
,

≤ c1d−10.
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We can bound B1 by applying eq. (11). For the trimmed good samples {i ∈ G̃j
⋂
T j}, we have

B2 ≤ 2αnmaxi∈G̃j |xi|. Since we choose α ≥ ε, we have B3 ≤ εnmaxi∈G̃j |xi|.
Putting together the pieces, and choosing α = cε for some universal constant c ≥ 1, we have

∣∣trmeanα{xi : i ∈ Sj} − µj
∣∣ = O

(
ν

(
ε log(nd) +

√
log d

n

))
,

with probability at least 1− d−4. This completes the proof for Lemma A.2.

B Statistical estimation via Robust Hard Thresholding

Here, we provide the Meta-Theorem Theorem 3.1 for statistical estimation performance of Algorithm 1

under statistical models.

We first introduce a supporting Lemma on the property of hard thresholding operator.

Lemma B.1 (Lemma 1 in [LB18]). We set k′ in hard thresholding operator as k′ = kc2ρ, where cρ ≥ 1,

then we have

sup

{
〈β∗ − Pk′ (z), z − Pk′ (z)〉

‖β∗ − Pk′ (z)‖22
: β∗, z ∈ Rd, ‖β∗‖0 ≤ k, β

∗ 6= Pk′ (z)

}
=

1

2

√
k

k′
=

1

2cρ
.

Note that cρ will be specified as 2ρ later in the proof, as we choose k′ = 4ρ2k as in Definition 2.3.

Proof of Theorem 3.1. We first study the objective function gap f
(
βt
)
−f (β∗). Since the population

risk f satisfies µα-strong convexity and µL-smoothness (Definition 2.3), we have

f (β∗)
(i)

≥ f
(
βt−1

)
+ 〈G

(
βt−1

)
,β∗ − βt−1〉+

µα
2

∥∥β∗ − βt−1
∥∥2

2
,

f
(
βt
)
≤ f

(
βt−1

)
+ 〈G

(
βt−1

)
,βt − βt−1〉+

µL
2

∥∥βt − βt−1
∥∥2

2
,

(12)

(13)

where (i) follows from the fact that β∗,βt−1 ∈ B, and µα-strong convexity holds.

Combining these two inequalities, we obtain

f
(
βt
)
− f (β∗) ≤ 〈G

(
βt−1

)
,βt − β∗〉 − µα

2

∥∥β∗ − βt−1
∥∥2

2
+
µL
2

∥∥βt − βt−1
∥∥2

2
.

Expanding the last term, we also have

µL
2

∥∥βt − β∗∥∥2

2
=
µL
2

∥∥βt−1 − β∗
∥∥2

2
− µL

2

∥∥βt − βt−1
∥∥2

2
+ µL〈βt−1 − βt,β∗ − βt〉

=
µL
2

∥∥βt−1 − β∗
∥∥2

2
− µL

2

∥∥βt − βt−1
∥∥2

2

+ µL

〈(
βt−1 − ηĜ

(
βt−1

))
− βt,β∗ − βt

〉
︸ ︷︷ ︸

T1

−
〈
Ĝ
(
βt−1

)
,βt − β∗

〉
︸ ︷︷ ︸

T2

For the term T1, recall that βt is obtained from hard thresholding, and βt = Pk′
(
βt−1 − ηĜ

(
βt−1

))
,
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we apply Lemma B.1 with z = βt−1 − ηĜ
(
βt−1

)
:〈(

βt−1 − ηĜ
(
βt−1

))
− βt,β∗ − βt

〉
≤ 1

2cρ

∥∥βt − β∗∥∥2

2
.

The term T2 can be bounded by using eq. (1) in Definition 3.1. We have

〈Ĝ
(
βt−1

)
,βt − β∗〉 ≥

〈
G
(
βt−1

)
,βt − β∗

〉
−
∣∣∣〈G (βt−1

)
− Ĝ

(
βt−1

)
,βt − β∗〉

∣∣∣
≥
〈
G
(
βt−1

)
,βt − β∗

〉
−
(
α
∥∥βt−1 − β∗

∥∥
2

+ ψ
) ∥∥βt − β∗∥∥

2
,

with probability at least 1− d−3.

We denote ∆t = βt−β∗ and ∆t = βt−β∗. Since, ηµα ≥ 1
µL
·µα = 1

ρ , putting together the pieces,

we have

f
(
βt
)
− f (β∗) ≤ µL

2

[(
1− 1

ρ

)∥∥∆t−1
∥∥2

2
−
(

1− 1

cρ

)∥∥∆t
∥∥2

2

]
+
(
α
∥∥∆t−1

∥∥
2

+ ψ
) ∥∥∆t

∥∥
2
, (14)

with probability at least 1 − d−3. Applying convexity, f
(
βt
)
− f (β∗) ≥ 0, as β∗ is the population

minimizer. Hence, we have

0 ≤ µL
2

[(
1− 1

ρ

)∥∥∆t−1
∥∥2

2
−
(

1− 1

cρ

)∥∥∆t
∥∥2

2

]
+
(
α
∥∥∆t−1

∥∥
2

+ ψ
) ∥∥∆t

∥∥
2
, (15)

with probability at least 1− d−3.

Notice that eq. (15) is a quadratic inequality for
∥∥∆t

∥∥
2
, and we can use the root of eq. (15) to

upper bound
∥∥∆t

∥∥
2
:

∥∥∆t
∥∥

2
≤

(
α
∥∥∆t−1

∥∥
2

+ ψ
)

+

√
(α‖∆t−1‖2 + ψ)

2
+
(
µL

(
1− 1

cρ

))
· µL

(
1− 1

ρ

)
‖∆t−1‖22

µL

(
1− 1

cρ

)
(i)

≤
2
(
α
∥∥∆t−1

∥∥
2

+ ψ
)

+
∥∥∆t−1

∥∥
2

√(
µL

(
1− 1

cρ

))
· µL

(
1− 1

ρ

)
µL

(
1− 1

cρ

)
=
∥∥∆t−1

∥∥
2

√√√√ 1− 1
ρ

1− 1
cρ

+
2α
∥∥∆t−1

∥∥
2

µL

(
1− 1

cρ

) +
2ψ

µL

(
1− 1

cρ

)
where (i) follows from the basic inequality

√
a+ b ≤

√
a+
√
b for non-negative a, b.

We choose cρ = 2ρ, and this leads to

√(
1− 1

ρ

)
/
(

1− 1
cρ

)
≤ 1 − 1

4ρ . Under the condition

α ≤ 1
32µα, we have 2α

µL
(

1− 1
cρ

) ≤ 1
8ρ . Then,

∥∥∆t
∥∥

2
≤
(

1− 1

8ρ

)∥∥∆t−1
∥∥

2
+

4ψ

µL
(16)
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Since βt+1 = ΠB

(
βt+1

)
is projection onto a convex set, by the property of Euclidean projection

[Bub15], we have ∥∥∆t
∥∥

2
=
∥∥βt − β∗∥∥

2
≤
∥∥βt − β∗∥∥

2
=
∥∥∆t

∥∥
2
. (17)

Together with eq. (17), eq. (16) establishes global linear convergence of ∆t.

We apply a union bound on T iterates. Since 1− Td−3 ≥ 1− d−2 for sufficiently large d, we have

∥∥∆T
∥∥

2
≤
(

1− 1

8ρ

)T
‖β∗‖2 +

32ψ

µα

with probability at least 1− d−2. Hence, we can achieve the final error

‖β̂ − β∗‖2 = O(ψ/µα),

by setting T = O
(
ρ log

(
µα‖β∗‖2

ψ

))
.

B.1 Sparse linear regression

Proof of Corollary 4.1 and Corollary 4.3. With Proposition A.2, Proposition A.1 in hand, we prove

the arbitrary corruption case Corollary 4.1, and the proof of heavy tailed distribution Corollary 4.3

is similar. We evaluate the RDC Definition 3.1 in Algorithm 1 for trimmed gradient estimator. With

probability at least 1− d−3, we have

∣∣∣〈Ĝ(β)−G(β),βt−1 − β∗
〉∣∣∣ (i)

≤
∥∥∥Ĝ(β)−G(β)

∥∥∥
∞

∥∥βt−1 − β∗
∥∥

1

(ii)

≤
√
k′ + k

∥∥∥Ĝ(β)−G(β)
∥∥∥
∞

∥∥βt−1 − β∗
∥∥

2

(iii)

≤
√
k′ + k

(√
‖β − β∗‖22 + σ2

(
ε log(nd) +

√
log d/n

))∥∥βt−1 − β∗
∥∥

2

≤
√
k′ + k

(
ε log(nd) +

√
log d/n

)
(‖β − β∗‖2 + σ)

∥∥βt−1 − β∗
∥∥

2

≤ (α‖β − β∗‖2 + ψ)
∥∥βt−1 − β∗

∥∥
2
,

where (i) follows from Holder inequality, (ii) follows from the sparsity of βt−1 − β∗ in Algorithm 1,

(iii) follows from plugging in Proposition A.1, which yields α =
√
k′ + k

(
ε log(nd) +

√
log d/n

)
, ψ =

σ
√
k′ + k

(
ε log(nd) +

√
log d/n

)
.

We apply a union bound on T iterates, and 1 − Td−3 ≥ 1 − d−2 for sufficiently large d. The

condition α ≤ 1
32µα in Theorem 3.1 can be achieved if

n = Ω

(
ρ2k log d

µ2
α

)
, and ε = O

(
µα

ρ
√
k log(nd)

)
.

Since ρ = µL/µα, and µL ≥ 1, these conditions can be expressed as

n = Ω
(
ρ4k log d

)
, and ε = O

(
1

ρ2
√
k log(nd)

)
.
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The final error can be expressed as

∥∥∥β̂ − β∗∥∥∥
2

= O

ρ2σ

ε√k log(nd)︸ ︷︷ ︸
robustness

error

+

√
k log d

n︸ ︷︷ ︸
statistical error


 .

B.2 Sparse logistic regression

Proof of Corollary 4.2 and Corollary 4.4. We prove Corollary 4.2, and the proof of Corollary 4.4 is

similar. With probability at least 1− d−3, we have

∣∣∣〈Ĝ(β)−G(β),βt−1 − β∗
〉∣∣∣ (i)

≤
√
k′ + k

(
ε log(nd) +

√
log d/n

)∥∥βt−1 − β∗
∥∥

2

≤ (α‖β − β∗‖2 + ψ)
∥∥βt−1 − β∗

∥∥
2
,

where (i) follows from the proof of Corollary 4.1 by using ‖Ĝ −G‖∞ = O
(√

log d/n
)

in Proposi-

tion A.1, and α = 0, ψ =
√
k′ + k

(
ε log(nd) +

√
log d/n

)
.

Similar to the proof in sparse linear regression, this final error can be expressed as

∥∥∥β̂ − β∗∥∥∥
2

= O

ρ2

ε√k log(nd)︸ ︷︷ ︸
robustness

error

+

√
k log d

n︸ ︷︷ ︸
statistical error
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C Sparsity recovery and sparse precision matrix estimation

C.1 Sparsity recovery guarantee

The same as the main text, we use supp(v, k) to denote top k indexes of v with the largest magnitude.

Let vmin denote the smallest absolute value of nonzero elements of v.

Proof of Corollary 4.5. The sparsity recovery guarantee is similar to [YLZ18]. Since β̂ is k′ sparse

(k′ ≥ k) by the definition of hard thresholding operator, we use β̂k to denote Pk(β̂). We use the

technique proof by contradiction. If supp(β̂, k) 6= supp(β∗), we at least have `2 error as β∗min. Hence,

β∗min ≤
∥∥∥β̂k − β∗∥∥∥

2

(i)

≤ 2
∥∥∥β̂ − β∗∥∥∥

2

(ii)
= O

(
ρ2σ

(
ε
√
k log(nd) +

√
k log d
n

))
, where (i) follows from

the triangle inequality and definition of hard thresholding ‖β̂k − β∗‖2 ≤ ‖β̂k − β̂‖2 + ‖β̂ − β∗‖2 ≤
2‖β̂ − β∗‖2, and (ii) follows from the statistical guarantee in Corollary 4.1.

This contradicts with the βmin-condition in Corollary 4.5, and hence we have the result in Corol-

lary 4.5.
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Algorithm 2 Neighborhood Selection via Robust Hard Thresholding (Robust NS)

1: Input: Data samples {xi}mi=1.
2: Output: The sparsity pattern estimation of Θ.
3: Parameters: Hard thresholding parameter k′.

4: for each variable j, do
5: Use Xj as response variable, and X(j) as covariates.
6: Run Algorithm 1 with input {xij ,xi(j)}mi=1. We set the parameter as k′, and the loss function

as least square loss, and use trimmed gradient estimator.
7: The output of Algorithm 1 is denoted as β̂j ∈ Rd−1.
8: end for
9: Aggregate the neighborhood support set of {β̂j}dj=1 via intersection or union.

C.2 Model selection for Gaussian graphical models

We then start to consider the sparsity recovery results for sparse precision matrix estimation – this is

the part of Corollary 4.6. We first use following notations for a Gaussian graphical model.

We use xi to denote the i-th samples of Gaussian graphical model, and Xj to denote the j-th

random variable. Let (j) be the index set {1, · · · , j − 1, j + 1, · · · , d}. We use Σ(j) = Σ(j),(j) ∈
R(d−1)×(d−1) to denote the sub-matrix of covariance matrix Σ with both j-th row and j-th column

removed, and use σ(j) ∈ Rd−1 to denote Σ’s j-th column with the diagonal entry removed. Also, we

use θ(j) ∈ Rd−1 to denote Θ’s j-th column with the diagonal entry removed. and Θj,j ∈ R to denote

the j-th diagonal element of Θ.

By basic probability computation, for each j = 1, · · · , d, the variable Xj conditioning X(j) follows

from a Gaussian distribution N (X>(j)Σ
−1
(j)σ(j), 1 − σ>(j)Σ

−1
(j)σ(j)). Then we have the linear regression

formulation Xj = X>(j)βj + ξj , where βj = Σ−1
(j)σ(j) and ξj ∼ N (0, 1 − σ>(j)Σ

−1
(j)σ(j)). Notice the

definition of precision matrix Θ, we have βj = −θ(j)/Θj,j , and Θj,j = 1/Var(ξj). Thus for the

j-th variable, θ(j) and βj have the same sparsity pattern. Hence, the sparsity pattern of θ(j) can be

estimated through β̂j via solving the optimization eq. (2) (Neighborhood Selection in [MB06]).

In Algorithm 2, we robustify Neighborhood Selection by using Robust Hard Thresholding (with

`2 loss and trimmed gradient estimator) to robustify eq. (2). In line 6, we use Robust Hard Thresh-

olding to regress each variable against its neighbors. In line 9, the sparsity pattern of Θ can be

estimated by aggregating the neighborhood support set of {β̂j}dj=1 via intersection or union. Similar

to Corollary 4.5, a θmin-condition guarantees consistent edge selection.

Proof of Corollary 4.6. Algorithm 2 iteratively uses Algorithm 1 as a Neighborhood Selection ap-

proach for each variable. Hence, we can apply Corollary 4.5 for each variable, and the sparsity

patterns are the same according to θ(j) = −βj/Var(ξj). The stochastic noise term σ in sparse linear

regression can be expressed as 1/
√

Θj,j . Hence, under the same condition as Corollary 4.1, for each

j ∈ [d], we require a θmin-condition for θ(j), θ(j),min = Ω

(
Θ

1/2
j,j ρ

2

(
ε
√
k log(nd) +

√
k log d
n

))
.

Using a union bound, we conclude that Algorithm 2 is consistent in edge selection, with probability

at least 1− d−1.
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Figure 3: In the left plot, we use Algorithm 1 under Model 4.1 with different noise level σ2. In the right plot, we use
Algorithm 1 under model misspecification with ε. The function value is defined as F (β) =

∑
i∈G̃(yi − x>i β)2.

D Full experiments details

We study empirical performance of Robust Hard Thresholding (Algorithm 1 and Algorithm 2). And

we present the complete details of experimental setup in Section 5.

D.1 Synthetic data – sparse linear models

We first consider the performance of Algorithm 1 under (generalized) linear models with ε-corrupted

samples.

Sparse linear regression. In the first experiemtn, we consider an exact sparse linear regression

model (Model 4.1). In this model, the stochastic noise ξ ∼ N (0, σ2), and we vary the noise level

σ2 in different simulations. We first generate authentic explanatory variables with parameters k =

5, d = 1000, n = 300, from a Gaussian distribution N (0d,Σ), where the covariance matrix Σ is a

Toeplitz matrix with an exponential decay Σij = exp−|i−j|. This design matrix is known to enjoy the

RSC-condition [RWY10], which meets the requirement of Corollary 4.1. The entries of the k-sparse

true parameter β∗ are set to either +1 or −1. Fixing the contamination level at ε = 0.1, we set the

covariates of the outliers as A, where A is a random ±1 matrix of dimension ε
1−ε×d, and the responses

of outliers to −Aβ∗.
To show the performance of Algorithm 1 under different noise levels determined by σ2, we track

the parameter error ‖βt − β∗‖2 in each iteration. In the left plot of Figure 3, Algorithm 1 shows

linear convergence, and the error curves flatten out at the level of the final error, which is consistent

with our theory. Furthermore, Algorithm 1 can achieve machine precision when σ2 = 0, which means

exact recovery of β∗.

Misspecified model. For the second experiment, we use a sparse linear regression with

model misspecification – the underlying authentic samples do not follow a linear model. We use

the same Toeplitz covariates and true parameter β∗, but and corresponding yi’s are calculated as

yi =
∑d
j=1 x

3
ijβ
∗
j . Although this is a non-linear function, sparse linear regression on these authentic
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samples can still recover the support, as the cubic function is monotone and β∗ is sparse. We generate

outliers using the same distribution as the first experiment, but with a different fraction of corruptions

ε.

For simplicity, we track the function evaluated on all authentic samples F (β) =
∑
i∈G(yi−x>i β)2.

In the right plot of Figure 3, we show the performance of Algorithm 1 under different ε, and the oracle

curve means using IHT only on authentic samples. The right plot has similar convergence under

different values of corrupted fraction ε, and shows the robustness of Algorithm 1 without assuming

an underlying linear model.

D.2 Robust M-estimators via Robust Hard Thresholding

Classical robust M -estimators [Loh17] (such as empirical risk minimization using Huber loss) are

widely used in robust statistics in the case where the error distribution is heavy tailed or when there

are arbitrary outliers only in the response variables. In the high dimensional setting, given ε-corrupted

samples Definition 2.1, we can use

min
β∈Ω

Ei∈uS `i(β; zi), s.t.‖β‖0 ≤ k,

where `i(β; zi) can be chosen as Huber loss with parameter δ:

Hδ(β; zi) =

 1
2 (yi − x>i β)2 for

∣∣yi − x>i β∣∣ ≤ δ,
δ
∣∣yi − x>i β∣∣− 1

2δ
2 otherwise.

[Loh17] studied robust M -estimators in high dimensions, and proposed a composite optimization

using ‖β‖1 instead of ‖β‖0. They established local convergence guarantee for this composite opti-

mization procedure, using a local RSC condition in a neighborhood around β∗. Yet their results do

not trivially extend to settings with arbitrarily corrupted covariates.

In our experiments, we use Huber loss in Robust Hard Thresholding to deal with heavy-tailed error

distribution. In addition to heavy-tailed noise, ε-fraction of {yi,xi}ni=1 are still arbitrarily corrupted.

For the experiments, we use the same Toeplitz covariates and true parameter β∗ as in previous

experiments on sparse linear models with fixed dimension parameters k = 5, d = 1000, n = 300.

The error distribution is a Cauchy distribution, which is a special case model misspecification, as it

doesn’t meet the sub-Gaussian requirement in Model 4.1. For different contamination levels, we set

the covariates of the outliers as A, where A is a random ±1 matrix of dimension ε
1−ε × d, and the

responses of outliers to −Aβ∗.
Empirically, we observe linear convergence, and this is shown in Figure 4. This linear convergence

results validates the local RSC condition proposed in [Loh17], and we can still achieve this even with

ε-fraction of corrupted covariates.

D.3 Sparse logistic regression

For binary classification problem, we generate samples from a sparse LDA problem, where the distribu-

tions of the explanatory variables conditioned on the response variables follow multivariate Gaussian

distributions with the same covariance matrix but different means.
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Figure 4: log ‖βt − β∗‖2 vs. iterations for Robust Hard Thresholding using Huber loss in the sparse linear model

where the error distribution is a heavy-tailed Cauchy distribution.

We generate authentic samples xi from a Gaussian distribution N (µ+, Id) if yi = +1, and another

distribution N (µ−, Id) if yi = −1. The parameters are fixed k = 5, d = 1000, n = 300. We set

µ+ = 1d + v, where v is k-sparse and its entries are set to be either +1/
√
k or −1/

√
k. And we set

µ− = 1d−v. The Bayes classifier is β∗ = 2v. This is a special case of Model 4.2, and it is known that

sparse logistic regression attains fast classification error rates [LPR15]. We then set the covariates of

the outliers as A, where A is a matrix of dimension ε
1−ε × d, where the entries are random ±3. The

responses of outliers follow the distribution Pr(yi|xi) = 1/(1 + exp(yix
>
i β
∗)), which is exactly the

opposite of Model 4.2.

We run Algorithm 1 with logistic loss under different levels of outlier fraction ε. In the left plot

of Figure 5, we observe similar linear convergence as sparse linear regression This is consistent with

Corollary 4.2 for sparse logistic regression, and it is clear that we cannot exactly recover β∗ unless

the number of samples n is infinite.

We then compare Algorithm 1 with the Trimmed Lasso estimator for sparse logistic regression

[YLA18]. Although they also use a trimming technique, their algorithm is totally different from

Algorithm 1, as we use coordinate-wise trimmed mean estimator for gradients in hard thresholding,

but they trim samples in each iteration according to the each sample’s loss. Under the same sparse

LDA model, we set k =
√
d, n = 15k. In simulation, we increase d, and plot classification error

(averaged over 50 trials on authentic test set) for different ε = 0.1, 0.2. The right plot of Figure 5

shows that Robust Hard Thresholding is better than Trimmed Lasso.

D.4 Synthetic data – Gaussian graphical model

We generate Gaussian graphical model samples by huge [ZLR+12]. We choose the “cluster” sparsity

pattern, where the clustering parameters are default values in the package where the number of clusters

in the graph is d/20, the probability that a pair of nodes within a cluster are connected is 0.3, and

there are no edges between nodes within different clusters. The off-diagonal elements of the precision

matrix is denoted as v, which is an experiment parameter for SNR.

We then add an additional ε
1−ε fraction of samples sampled from another distribution. Following

the experimental design in [YL15, WG17], each outlier is generated by a mixture of d-dimensional
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Figure 5: The left plot demonstrates linear convergence of Algorithm 1 for sparse logistic regression. The right plot
compares our Robust Hard Thresholding (denoted as Trimmed HT) to Trimmed Lasso [YLA18] in binary classification
problem.

Gaussian distributions 1
2N (µo,Σo) + 1

2N (−µo,Σo), where µo = (1.5, 1.5, · · · , 1.5)>, and Σo = Id.

We compare Algorithm 2 with other existing methods: Trimmed GLasso [YLA18], RCLIME [WG17],

Skeptic [LHY+12b], and Spearman [LT18]. The latter two are based on robustifying the covariance

matrix, and then using standard graphical model selection algorithms such as GLasso or CLIME. To

directly compare these methods, we use CLIME for both of them.

To evaluate model selection performance, we use receiver operating characteristic (ROC) curves

to compare our method to others over the full regularization paths. We generate regularization paths

for other robust algorithms by tuning the λ in CLIME and GLasso. For Algorithm 2, we explicitly

tune different sparsity level k′ to generate the regualization path.

We set ε = 0.1, and vary (n, d), and the SNR parameter v for off-diagonal elements. We use

different (n, d) = (100, 100), (200, 200). For different off-diagonal values, we set v = 0.3 (Low SNR),

and v = 0.6 (High SNR). We show ROC curves to demonstrate model selection performance in

Figure 6. For the entire regularization path, our algorithm (denoted as Robust NS) has a better ROC

compared to other algorithms.

In particular, Robust NS outperforms other methods with higher true positive rate when the false

positive rate is small. This is the case where we use smaller hard thresholding sparsity in Algorithm 2,

and larger regularization parameter for ‖Θ‖1 other methods based on GLasso and CLIME. This

validates our theory in Corollary 4.6, which guarantees sparsity recovery when hard thresholding

hyper-parameter k′ is suitably chosen to match β∗’s sparsity k.

D.5 Real data experiments

Here, we present details of the experiment using US equities data [ZLR+12]. We preprocess it by taking

log-transformation and calculate the corresponding daily returns. Obvious outliers are removed by

winsorizing each variable so that all samples are within five times the winsorized standard deviation

from the winsorized mean. After preprocessing, we present example histograms and QQ plots from

29



FP

0 0.2 0.4 0.6 0.8 1

T
P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC of cluster graph

RCLIME

Skeptic

Spearman

Robust NS

Oracle NS

TGLasso

(a) d = 100, low SNR

FP

0 0.2 0.4 0.6 0.8 1

T
P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC of cluster graph

RCLIME

Skeptic

Spearman

Robust NS

Oracle NS

TGLasso

(b) d = 100, high SNR

FP

0 0.2 0.4 0.6 0.8 1

T
P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC of cluster graph

RCLIME

Skeptic

Spearman

Robust NS

Oracle NS

TGLasso

(c) d = 200, low SNR

FP

0 0.2 0.4 0.6 0.8 1

T
P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC of cluster graph

RCLIME

Skeptic

Spearman

Robust NS

Oracle NS

TGLasso

(d) d = 200, high SNR

Figure 6: ROC curves of different methods on cluster graphs with arbitrary corruptions. The curve Robust NS denotes
Algorithm 2, and Oracle NS denotes the neighborhood selection Lasso only on authentic data.

the Information Technology sector. In Figure 7 , we list the histograms of two typical companies in

this sector. As we can see from Figure 8, even after preprocessing on these stock prices, they are

still highly non-normal and heavy tailed. We do not add any manual outliers as financial data is

already heavy tailed and have many outliers [dP18]. We also compare Algorithm 2 with the baseline

NS approach (without consideration for corruptions or outliers).

We limit the number of edges to 2,000 for both methods. The cluster colored by purple denotes

the Information Technology sector. In Figure 9, we can easily separate different clusters by using

Robust NS. However, the Vanilla NS approach cannot distinguish the sector Information Technology

(purple). Furthermore, we can observe that stocks from Information Technology (colored by purple)

are much better clustered by Algorithm 2.
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(a) An example from the sector Information
Technology.

(b) An example from the sector Information
Technology.

Figure 7: We winsorize the daily return of log price so that all samples are within five winsorized standard deviation
from the winsorized mean. After preprocessing, we show histograms of the daily returns.
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(a) Adobe Systems Inc from sector Information Tech-
nology.
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(b) Agilent Technologies Inc from sector Information
Technology.

Figure 8: After the same preprocessing, we present the QQ plot of the daily returns versus standard normal.
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(a) Graph estimated by Robust NS (Algorithm 2). (b) Graph estimated by Vanilla NS approach.

Figure 9: Graph estimated from the S&P 500 stock data by Algorithm 2 and Vanilla NS approach. Variables are
colored according to their sector. In particular, the stocks from sector Information Technology are colored as purple.
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