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Introduction: background of the dissertation

Large-scale statistical problems: both the dimension d and the
sample size n may be large (possibly n� d).

Low dimensional structures in the high dimensional setting.

Many examples of this:
Sparse regression.
Compressed Sensing of low rank matrices.
Low rank matrix completion.
Low rank + sparse matrix decomposition.
etc...
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M-estimation in high dimensions

Suppose we observe n i.i.d. samples: {zi}n
i=1.

M-estimation with constraint

β̂ = arg min
n∑

i=1

`i(β; zi)︸ ︷︷ ︸
empirical risk

, subject to β ∈ C.︸ ︷︷ ︸
low dimensional

structure

In regression, zi = (yi , xi) ∈ R×Rd ,

Lasso as an example

β̂ = arg min
n∑

i=1

(yi − x>i β)2

︸ ︷︷ ︸
empirical risk

, subject to ‖β‖1 ≤ R.︸ ︷︷ ︸
`1 norm

enforces sparsity
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Sufficient conditions for sparse regression

`1 relaxation
Computationally tractable compared to `0 optimization.

Minimax optimal under restrictive conditions.

Computationally tractable approaches (e.g., `1 minimization,
Iterative Hard Thresholding) rely on restrictive conditions:

Restricted isometry (Candes & Tao ’05).
Restricted eigenvalue (Bickel, Ritov & Tsybakov ’08).
Restricted strong convexity (Negahban et al. ’12).

Certifying these conditions is NP-hard.

Instead, we impose strong assumptions on the probabilistic
models of the data, such as sub-Gaussianity.
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Contamination model

[G. Box] “All models are wrong, but some are useful.”

What if the real data violate the assumptions required: Huber’s
contamination model (Huber ’64):

Figure: ε-fraction are arbitrary corruptions.

A single corrupted sample can arbitrarily corrupt the original
M-estimation (e.g., maximum likelihood estimation).

In R1 case, trimmed mean has optimal guarantee |µ̂− µ| ≤ O(ε).
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Heavy tailed model

Another way to model outliers is via heavy-tailed distributions.

A random variable X has heavy-tailed distribution if E|X |k =∞ for
some k > 0. For bounded second moment P, we have

EP(X ) = µ, VarP(X ) ≤ σ2.

The guarantees for empirical mean estimator are not satisfactory

Pr

(
|µ̂− µ| ≥ σ

√
1/α
N

)
≤ α.
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Mean estimation in R1 under heavy tails

Median-of-means (MOM) estimator (Nemirovski & Yudin 1983):
Split samples into k = dlog(1/α)e groups G1, · · · ,Gk of size N/k :

We recover the sub-Gaussian concentration

Pr

(∣∣∣µ̂(k) − µ∣∣∣ ≥ 6.4σ

√
log(1/α)

N

)
≤ α.
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Robust statistics review: somewhat recent history

Arbitrary corruption

Robust mean estimation (Diakonikolas et al., Lai, Rao & Vempala ’16).

Robust sparse mean estimation (Balakrishnan et al ’17, Liu et al ’18).

Robust regression using robust gradient descent (Chen, Su & Xu ’17,
Prasad et al ’18).

Least Trimmed Squares type (Alfons et al. ’13, Yang, Lozano & Aravkin
’18, Shen & Sanghavi ’19).

Heavy tailed distribution

Catoni’s mean estimator using Huber loss (Catoni ’12).

Covariance estimation with heavy-tailed entries (Minsker ’18).

MOM tournaments for ERM (Lugosi & Mendelson ’16, Lecué & Lerasle
’17, Jalal et al ’20).
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Summary

1 Restrictive conditions (RIP/RE/RSC)→ optimal estimation in high
dimensions.

2 Many existing algorithms are efficient to deal with low dimensional
structure in high dimensions.

Question
1 Under heavy tails or arbitrary corruption, what assumptions are

sufficient to enable efficient and robust algorithms for high
dimensional M-estimation?

2 Can we obtain robust algorithms without losing any computational
efficiency?
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Problem setup: heavy tailed distribution in Rd

For a distribution P of x ∈ Rd with mean E(x) and covariance Σ,

Bounded 2k -th moment
We say that P has bounded 2k -th moment, if there is a universal
constant C2k such that, for a unit vector v ∈ Rd , we have

EP |〈v , x − E(x)〉|2k ≤ C2k EP(|〈v , x − E(x)〉|2)k .

For example, we will study sparse linear regression with bounded 4-th
moments for x and bounded variance for y and noise.

14 / 44



Problem setup: heavy tailed distribution in Rd

For a distribution P of x ∈ Rd with mean E(x) and covariance Σ,

Bounded 2k -th moment
We say that P has bounded 2k -th moment, if there is a universal
constant C2k such that, for a unit vector v ∈ Rd , we have

EP |〈v , x − E(x)〉|2k ≤ C2k EP(|〈v , x − E(x)〉|2)k .

For example, we will study sparse linear regression with bounded 4-th
moments for x and bounded variance for y and noise.

14 / 44



Problem setup: ε-corrupted samples

Sparse regression model:

yi = xi
Tβ∗ + ξi .

sub-Gaussian covariates:
Cov(x) = Σ.

sub-Gaussian noise:
Var(ξ) ≤ σ2.

Contamination model:
First, {zi} ∼ P.

We observe {zi , i ∈ S}.
P: sparse regression model.

S: Samples with corruption.

ε: fraction of outliers.
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Related work for robust sparse regression

Arbitrary corruption

Wright & Ma ’10, Li ’12, Bhatia, Jain & Kar ’15, Karmalkar & Price ’19:
Robust regression resilient to a constant fraction of corruptions only in y .

Chen, Caramanis & Mannor ’13: Robust sparse regression resilient to
corruptions in x and y .

Balakrishnan et al ’17, Liu et al ’18, Diakonikolas et al ’19: Robust
sparse regression resilient to a constant fraction of corruptions in x and
y . They only deal with identity/sparse covariance.

Heavy tailed distribution

Hsu & Sabato ’16, Loh ’17: heavy tailed distribution only in y .

Fan, Wang & Zhu ’16: heavy tailed distribution in x and y .

Lugosi & Mendelson ’16: MOM tournaments, but not computationally
tractable.

16 / 44



Dealing with corruption/heavy tails in (x , y)

Chen, Caramanis & Mannor ’13 and Fan, Wang & Zhu ’16:
1 Pre-process (x , y) by trimming or shrinking.
2 The impacts of corruption/heavy tails are controlled.

3 Restricted Eigenvalue condition holds on the processed data.
4 Common `1 strategy works on the processed data.

However, this leads to sub-optimal recovery guarantees.

A simple example: sparse linear equations with outliers.
A simple exhaustive search algorithm guarantees exact recovery.

If the pre-processing does not remove all the outliers, exact
recovery is impossible.

Hence the pre-processing idea is not optimal.
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Thought experiment
For the population risk f (β) = Ezi∼P `i(β; zi), suppose we had access
to the population gradient G(β) = Ezi∼P ∇`i(β; zi).

We use Population Hard Thresholding
1 At current βt , we obtain Gt .

2 Update the parametera: βt+1 = Pk ′

(
βt − ηGt

)
.

aThe hard thresholding operator keeps the largest (in magnitude) k ′ elements of
a vector, and k ′ is proportional to k .

If the population risk f satisfies µα-strong convexity & µβ-smoothness:

µα
2 ‖β1−β2‖2

2 ≤ f (β1)− f (β2)−|〈∇f (β2),β1 − β2〉| ≤
µβ
2 ‖β1−β2‖2

2,

then Population Hard Thresholding with η = 1
µβ

has linear convergence∥∥βt+1 − β∗
∥∥

2 ≤
(

1− µα
µβ

)∥∥βt − β∗
∥∥

2.
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Finite-sample analysis and robustness

In practice: no access to population gradient G(β).

For authentic sub-Gaussian samples, empirical gradient Ĝ(β)
should have well-controlled stochastic fluctuation.

For ε-corrupted samples, empirical average Ĝ(β) can be
arbitrarily bad.

We use a robust gradient estimator Ĝrob(β), as a robust
counterpart of the population version G(β).

Question: a way to measure how close the robust version is to the
population version in high dimensions?
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Ĝrob(β) vs. G(β) – how close?

Past results for robust gradient descent in low dimensions (Chen,
Su & Xu ’17, Prasad et al ’18) establish bounds on∥∥∥Ĝrob (β)− G (β)

∥∥∥
2
.

Liu et al ’18 proposed Robust Sparse Gradient Estimator (RSGE)
to bound ‖Ĝrob (β)− G (β)‖2 in high dimensions.

Stability of IHT + RSGE lead to optimal recovery (Liu et al ’18).

However, `2 norm bound may be too much to ask.
For general (non-sparse, non-identity) covariance?
Sparse logistic regression?
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Robust Descent Condition
RSGE ‖Ĝrob (β)− G (β)‖2 requires bounds in all directions in
high dimensions Rd .

Intuition: IHT guarantees that the trajectory goes through sparse
vectors, we only need to bound a small number of directions for
robust gradients in Rd .

We propose a Robust Descent Condition (RDC).∣∣∣〈Ĝrob(β)− G(β), β̃ − β∗〉
∣∣∣ ≤ (α‖β − β∗‖2 + ψ

)∥∥∥β̃ − β∗
∥∥∥

2

β and β̃ are the subsequent iterates of the algorithm.
ψ is the accuracy of the robust gradient estimator.

We show a Meta Theorem (Stability of Robust Hard Thresholding)
If we have a (α,ψ)-RDC, it guarantees ‖β̂ − β∗‖2 = O(ψ).
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RSGE ‖Ĝrob (β)− G (β)‖2 requires bounds in all directions in
high dimensions Rd .

Intuition: IHT guarantees that the trajectory goes through sparse
vectors, we only need to bound a small number of directions for
robust gradients in Rd .

We propose a Robust Descent Condition (RDC).∣∣∣〈Ĝrob(β)− G(β), β̃ − β∗〉
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RDC: a geometric illustration∣∣∣〈Ĝrob(β)− G(β), β̃ − β∗〉
∣∣∣ ≤ (α‖β − β∗‖2 + ψ

)∥∥∥β̃ − β∗
∥∥∥

2

β∗
β̃

β

Ĝrob(β)G(β)
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The stability property for Robust Hard Thresholding

Theorem 1 (Meta-Theorem)

Suppose we observe samples from a statistical model with population
risk f satisfying µα-strong convexity and µβ-smoothness.

If a robust gradient estimator satisfies (α,ψ)-Robust Descent Condition
where α ≤ 1

32µα, then Robust Hard Thresholding with η = 1/µβ
outputs β̂ such that

‖β̂ − β∗‖2 = O(ψ/µα),

by setting T = O (log (µα‖β∗‖2/ψ)).

We prefer a sufficiently small ψ.

This Meta-Theorem is flexible enough to recover existing results.
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Using RDC to recover existing results: I

We can use the RDC and the Meta-Theorem to recover existing results
in the literature. Some immediate examples are as follows.

When we have uncorrupted sub-Gaussian samples.
Suppose the samples follow from sparse linear regression with
sub-Gaussian covariates and noise N (0, σ2).

The empirical average of gradients Ĝ satisfies the RDC with

ψ = O(σ
√

k log(d)
n ).

Plugging in this ψ to the Meta-Theorem recovers the well-known
minimax rate for sparse linear regression.
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Using RDC to recover existing results: II

When we have a constant fraction of arbitrary corruption.

When Σ = Id or is sparse, [BDLS17, LSLC18, DKK+19] provide
RSGE which upper bounds ‖Ĝrob(β)− G(β)‖2 ≤ α‖β − β∗‖2 + ψ,
for a constant fraction ε of corrupted samples.

Since |〈Ĝrob(β)− G(β), β̃ − β∗〉| ≤ ‖Ĝrob(β)− G(β)‖2‖β̃ − β∗‖2,
we observe that RSGE implies RDC.

Hence any RSGE can be used.
For Σ = I, [BDLS17, DKK+19] guarantees an RDC with
ψ = O(σε) when n = Ω(k2 log d/ε2);
For unknown sparse Σ, [LSLC18] guarantees ψ = O(σ

√
ε) when

n = Ω(k2 log d/ε).

Plugging in this ψ to the Meta-Theorem recovers the State-of-the-Art
results for robust sparse regression.
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Our robust algorithms based on RDC

Robust Descent Condition∣∣∣〈Ĝrob(β)− G(β), β̃ − β∗〉
∣∣∣ ≤ (α‖β − β∗‖2 + ψ

)∥∥∥β̃ − β∗
∥∥∥

2
.

When β̃ − β∗ only takes a small number of directions, then it is a
much easier condition to satisfy than the `2 norm.

If β∗ is sparse, and the algorithm guarantees that the trajectory
goes through sparse vectors, then β̃ − β∗ will always be sparse.

We only need to guarantee ‖Ĝrob(β)− G(β)‖∞, and
coordinate-wise technique suffices to obtain minimax result.

For R1 mean estimation, we can use trimmed mean for corrupted
samples and median-of-means for heavy tails.
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Our robust algorithms based on RDC

We only need to guarantee ‖Ĝrob(β)− G(β)‖∞, and
coordinate-wise technique suffices to obtain minimax result.

For R1 mean estimation, we can use trimmed mean for corrupted
samples and median-of-means for heavy tails.

Robust Hard Thresholding
1 At current βt , calculate all gradients: gt

i = ∇`i(β
t ), i ∈ [n].

2 For {gt
i }n

i=1, we obtain Ĝt
rob satisfying the RDC by using two

options:
(♠) trimmed gradient estimator for arbitrary corruption.
(♣) MOM gradient estimator for heavy tailed distribution.

3 Update the parameter: βt+1 = Pk ′

(
βt − ηĜt

rob

)
.
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Main results

Simple coordinate-wise technique gives sharp results

Corollary for arbitrary corruptions

Resilient to a (1/
√

k)-fraction of arbitrary outliers.

When ε→ 0, we have minimax rate.

When σ2 → 0, we have exact recovery.

Corollary for heavy tailed distribution
Can deal with bounded 4-th moment covariates.

The same minimax rate as the sub-Gaussian case.

When σ2 → 0, we have exact recovery.

Computational complexity: both of them are nearly linear time.
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Simulation study: arbitrary corruption

Iterations
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Figure: The corruption level ε is fixed and we use trimmed gradient for
different noise level σ2. We plot log(

∥∥βt − β∗
∥∥

2) vs. iterates.
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Simulation study: heavy tailed distribution

Sample size
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Figure: We consider log-normal samples, and we use MOM gradient for
different sample size to compare with baselines (Lasso on heavy tailed data,
and Lasso on sub-Gaussian data). We plot log(

∥∥βt − β∗
∥∥

2) vs. sample size.

32 / 44



Summary

Important distinction in high dimensional statistics:
corruption/heavy tails both in (x , y) vs. only in y .

A natural condition we call the Robust Descent Condition.

RDC + Robust Hard Thresholding: fast linear convergence to
minimax rate.

Sharpest available error bound for corruption/heavy tails models.
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Low rank matrix regression

Matrix regression (multivariate regression) has n samples which
considers prediction with T tasks by mapping x ∈ Rp to y ∈ RT .
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Low rank matrix regression
We are interested in the low rank structure of Θ ∈ Rp×T .

For sub-Gaussian data X and W , rank-r assumption for Θ∗

guarantees the estimation error
√

r(p+T )
n , instead of

√
pT
n .

Nuclear norm regularization* (similar to `1 regularization) or
Singular Value Projection† (SVP, similar to IHT).

*The nuclear norm is the summation of the singular values.
†The SVP iteratively makes an orthogonal projection onto a set of low-rank

matrices.
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RDC in matrix space

What if the explanatory variable x and the stochastic noise w follow
heavy tailed distribution (bounded 4-th moment)?

Recall that IHT + RDC→ a robust estimator for heavy tailed
sparse regression.

We can use Singular Value Projection + matrix version of RDC.

RDC in vector space∣∣∣〈Ĝrob(β)− G(β), β̃ − β∗〉
∣∣∣ ≤ (α‖β − β∗‖2 + ψ

)∥∥∥β̃ − β∗
∥∥∥

2
.

RDC in matrix space∣∣∣〈Ĝrob(Θ)− G(Θ), Θ̃−Θ∗〉
∣∣∣ ≤ (α ‖Θ−Θ∗‖F + ψ)

∥∥∥Θ̃−Θ∗
∥∥∥
F
.
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Robust gradient in matrix space

RDC in matrix space∣∣∣〈Ĝrob(Θ)− G(Θ), Θ̃−Θ∗〉
∣∣∣ . (α ‖Θ−Θ∗‖F + ψ)

∥∥∥Θ̃−Θ∗
∥∥∥
F
.

The trajectory Θ̃ is guaranteed to be low rank by SVP.

We only need to guarantee ‖Ĝrob(Θ)− G(Θ)‖op.

We leverage a robust matrix estimator from (Minsker ’18):
trim the spectrum of each sample, and the remaining average will
have sub-Gaussian concentration bound.

This robust gradient estimator satisfies matrix version of RDC, and

the Robust SVP converges linearly to the error rate
√

r(p+T )
n .

The Robust SVP takes O(npT )-time complexity per iteration.
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∣∣∣ . (α ‖Θ−Θ∗‖F + ψ)

∥∥∥Θ̃−Θ∗
∥∥∥
F
.

The trajectory Θ̃ is guaranteed to be low rank by SVP.

We only need to guarantee ‖Ĝrob(Θ)− G(Θ)‖op.
We leverage a robust matrix estimator from (Minsker ’18):

trim the spectrum of each sample, and the remaining average will
have sub-Gaussian concentration bound.

This robust gradient estimator satisfies matrix version of RDC, and

the Robust SVP converges linearly to the error rate
√

r(p+T )
n .

The Robust SVP takes O(npT )-time complexity per iteration.

39 / 44



Robust gradient in matrix space

RDC in matrix space∣∣∣〈Ĝrob(Θ)− G(Θ), Θ̃−Θ∗〉
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Robust factorized gradient descent

Speed up by Burer-Monteiro formulation Θ = UV>, where U ∈ Rp×r ,
and V ∈ RT×r .

Robust factorized gradient descent

ĜU and ĜV are robust versions of gradients on U and V ,

U t+1 = U t − ηĜU ,

V t+1 = V t − ηĜV .

An element-wise MOM gradient estimator for U and V .

Nearly the same statistical results as the Robust SVP.

Time complexity O(nr(p + T )) per iteration.

Local linear convergence guarantee.
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An element-wise MOM gradient estimator for U and V .

Nearly the same statistical results as the Robust SVP.

Time complexity O(nr(p + T )) per iteration.

Local linear convergence guarantee.

40 / 44



Summary

A natural extension of the RDC to the low-rank setting.

For covariates x with 4-th moment bound, we show that a gradient
estimator adapted from (Minsker ’18) satisfies the RDC.

Our algorithm, Robust SVP, obtains the sub-Gaussian rate, with
time complexity O(npT ) per iteration.

Factorized robust gradient descent uses element-wise MOM.
Local linear convergence to the sub-Gaussian rate.
The time complexity is reduced to O(nr(p + T )) per iteration.
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