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Introduction: background of the dissertation

@ Large-scale statistical problems: both the dimension d and the
sample size n may be large (possibly n < d).

@ Low dimensional structures in the high dimensional setting.
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Introduction: background of the dissertation

@ Large-scale statistical problems: both the dimension d and the
sample size n may be large (possibly n < d).

@ Low dimensional structures in the high dimensional setting.

@ Many examples of this:

Sparse regression.

Compressed Sensing of low rank matrices.
Low rank matrix completion.

Low rank + sparse matrix decomposition.
etc...
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M-estimation in high dimensions

Suppose we observe ni.i.d. samples: {z}]_.

M-estimation with constraint

n
,@ = arg min Zéi(ﬁ; Z;), subjectto BeC.
——

=1 low dimensional
i, . structure
empirical risk
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M-estimation in high dimensions

Suppose we observe ni.i.d. samples: {z}]_.

M-estimation with constraint

n
,@ = arg min Zéi(ﬁ; Z;), subjectto BeC.
——

i=1 low dimensional
R - structure
empirical risk

In regression, z; = (y;, X;) € R x RY,

Lasso as an example

n
B = arg min Z(yi —x/'B)?, subjectto |3, < R.
i=1 £1 norm

empirical risk enforces sparsity
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Sufficient conditions for sparse regression

/4 relaxation
@ Computationally tractable compared to ¢y optimization.
@ Minimax optimal under restrictive conditions.

@ Computationally tractable approaches (e.g., 1 minimization,
Iterative Hard Thresholding) rely on restrictive conditions:
o Restricted isometry (Candes & Tao '05).
o Restricted eigenvalue (Bickel, Ritov & Tsybakov '08).
o Restricted strong convexity (Negahban et al. ’12).

6/44



Sufficient conditions for sparse regression

/4 relaxation
@ Computationally tractable compared to ¢y optimization.
@ Minimax optimal under restrictive conditions.

@ Computationally tractable approaches (e.g., 1 minimization,
Iterative Hard Thresholding) rely on restrictive conditions:

o Restricted isometry (Candes & Tao '05).
o Restricted eigenvalue (Bickel, Ritov & Tsybakov '08).
o Restricted strong convexity (Negahban et al. ’12).

@ Certifying these conditions is NP-hard.

@ Instead, we impose strong assumptions on the probabilistic
models of the data, such as sub-Gaussianity.
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Contamination model

[G. Box] “All models are wrong, but some are useful.”

What if the real data violate the assumptions required: Huber’s
contamination model (Huber '64):

= N\ N\
ideal model noise observed model

Figure: e-fraction are arbitrary corruptions.
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Contamination model

[G. Box] “All models are wrong, but some are useful.”

What if the real data violate the assumptions required: Huber’s
contamination model (Huber '64):

4 =

ideal model noise observed model

Figure: e-fraction are arbitrary corruptions.

@ A single corrupted sample can arbitrarily corrupt the original
M-estimation (e.g., maximum likelihood estimation).

@ InR' case, trimmed mean has optimal guarantee |fi — | < O(e).

8/44



Heavy tailed model

Another way to model outliers is via heavy-tailed distributions.

A random variable X has heavy-tailed distribution if E|X|* = oo for
some k > 0. For bounded second moment P, we have

Ep(X) = p, Varp(X) < o°.
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Heavy tailed model

Another way to model outliers is via heavy-tailed distributions.

A random variable X has heavy-tailed distribution if E|X|* = oo for
some k > 0. For bounded second moment P, we have

Ep(X) = p, Varp(X) < o°.

The guarantees for empirical mean estimator are not satisfactory

(m yl >a\/7>
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Mean estimation in R' under heavy tails

Median-of-means (MOM) estimator (Nemirovski & Yudin 1983):
Split samples into kK = [log(1/a)] groups Gy, - - - , Gk of size N/k:

Gy Gk

~

——~ -
X1,...,X|G1‘ ...... XN—\Gk|+17--~7XN
N s - g

v

= 1 = o1
H1=T1G,T > X HE=TG, 71 > X
1 Xx;eaG; kKl x;/eay

'

/’j(k);:median(ﬁ1 seres k)

We recover the sub-Gaussian concentration

Pr <‘ﬁ(k) — ,u’ > 6.40 Iog(lll/oz)> <a

10/44



Robust statistics review: somewhat recent history

Arbitrary corruption
@ Robust mean estimation (Diakonikolas et al., Lai, Rao & Vempala ’16).
@ Robust sparse mean estimation (Balakrishnan et al ’17, Liu et al '18).

@ Robust regression using robust gradient descent (Chen, Su & Xu 17,
Prasad et al ’18).

@ Least Trimmed Squares type (Alfons et al. ’13, Yang, Lozano & Aravkin
’18, Shen & Sanghavi ’19).

Heavy tailed distribution
@ Catoni’'s mean estimator using Huber loss (Catoni '12).
@ Covariance estimation with heavy-tailed entries (Minsker '18).

@ MOM tournaments for ERM (Lugosi & Mendelson '16, Lecué & Lerasle
’17, Jalal et al '20).
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Summary

@ Restrictive conditions (RIP/RE/RSC) — optimal estimation in high
dimensions.
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Summary

@ Restrictive conditions (RIP/RE/RSC) — optimal estimation in high
dimensions.

@ Many existing algorithms are efficient to deal with low dimensional
structure in high dimensions.

Question

@ Under heavy tails or arbitrary corruption, what assumptions are
sufficient to enable efficient and robust algorithms for high
dimensional M-estimation?

@ Can we obtain robust algorithms without losing any computational
efficiency?
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Problem setup: heavy tailed distribution in R?

For a distribution P of x € RY with mean E(x) and covariance X,

Bounded 2k-th moment

We say that P has bounded 2k-th moment, if there is a universal
constant Co such that, for a unit vector v € RY, we have

Ep |(v, x — E(x))[** < CacEp(|(v, x — E(x))[*)".
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Problem setup: heavy tailed distribution in R?

For a distribution P of x € RY with mean E(x) and covariance X,

Bounded 2k-th moment

We say that P has bounded 2k-th moment, if there is a universal
constant Co such that, for a unit vector v € RY, we have

Ep |(v, x — E(x))[** < CacEp(|(v, x — E(x))[*)".

For example, we will study sparse linear regression with bounded 4-th
moments for x and bounded variance for y and noise.
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Problem setup: e-corrupted samples

Sparse regression model:

° yi=x'p"+¢.

@ sub-Gaussian covariates:
Cov(x) = X.

@ sub-Gaussian noise:
Var(¢) < o2.

Contamination model:
First, {zj} ~ P.
We observe {z;,i € S}.

S: Samples with corruption.

e: fraction of outliers.

P: sparse regression model.
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Problem setup: e-corrupted samples

Sparse regression model:
° yi=x'p"+¢.

@ sub-Gaussian covariates:

Cov(x) = X.
@ sub-Gaussian noise:
Var(¢) < o2.

Contamination model:
@ First, {z;} ~ P.
@ We observe {z;,i € S}.
@ P: sparse regression model.
@ S: Samples with corruption.
@ ¢: fraction of outliers.

X B

aon+ |V =

X;4

N ya
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Related work for robust sparse regression

Arbitrary corruption

@ Wright & Ma ’10, Li 12, Bhatia, Jain & Kar ’15, Karmalkar & Price '19:
Robust regression resilient to a constant fraction of corruptions only in y.

@ Chen, Caramanis & Mannor ’13: Robust sparse regression resilient to
corruptions in x and y.

@ Balakrishnan et al 17, Liu et al *18, Diakonikolas et al '19: Robust
sparse regression resilient to a constant fraction of corruptions in x and
y. They only deal with identity/sparse covariance.

Heavy tailed distribution
@ Hsu & Sabato '16, Loh ’17: heavy tailed distribution only in y.
@ Fan, Wang & Zhu ’16: heavy tailed distribution in x and y.

@ Lugosi & Mendelson '16: MOM tournaments, but not computationally
tractable.
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Dealing with corruption/heavy tails in (x, y)

Chen, Caramanis & Mannor ’13 and Fan, Wang & Zhu '16:
@ Pre-process (x, y) by trimming or shrinking.
© The impacts of corruption/heavy tails are controlled.
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Dealing with corruption/heavy tails in (x, y)

Chen, Caramanis & Mannor ’13 and Fan, Wang & Zhu '16:
@ Pre-process (x, y) by trimming or shrinking.
© The impacts of corruption/heavy tails are controlled.
© Restricted Eigenvalue condition holds on the processed data.
© Common /4 strategy works on the processed data.

However, this leads to sub-optimal recovery guarantees. |

A simple example: sparse linear equations with outliers.
@ A simple exhaustive search algorithm guarantees exact recovery.

@ If the pre-processing does not remove all the outliers, exact
recovery is impossible.

@ Hence the pre-processing idea is not optimal.
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Thought experiment

For the population risk f(8) = E;~.p ¢i(3; z;), suppose we had access
to the population gradient G(3) = E,..p V{i(3; z)).

18/44



Thought experiment

For the population risk f(8) = E;~.p ¢i(3; z;), suppose we had access
to the population gradient G(3) = E,..p V{i(3; z)).

We use Population Hard Thresholding
@ Atcurrent 3!, we obtain G'.

@ Update the parameter?: 3+ = P, (ﬂf — nG’).

aThe hard thresholding operator keeps the largest (in magnitude) k’ elements of
a vector, and k' is proportional to k.
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Thought experiment

For the population risk f(8) = E;~.p ¢i(3; z;), suppose we had access
to the population gradient G(3) = E,..p V{i(3; z)).

We use Population Hard Thresholding
@ Atcurrent 3!, we obtain G'.

@ Update the parameter?: 3+ = P, (ﬂf — nG’).

aThe hard thresholding operator keeps the largest (in magnitude) k’ elements of
a vector, and k' is proportional to k.

If the population risk f satisfies j.-strong convexity & j.3-smoothness:

e (181 = Bal3 < f(B1) —f(B2) — [(V1(Bz), B1 — Ba)| < |81 — Bell3,
then Population Hard Thresholding with n = ;J? has linear convergence

I8 - 87|l < (1 - ) |18t - 87|
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Finite-sample analysis and robustness

@ In practice: no access to population gradient G(3).

@ For authentic sub-Gaussian samples, empirical gradient a(ﬁ)
should have well-controlled stochastic fluctuation.

@ For e-corrupted samples, empirical average a(ﬁ) can be
arbitrarily bad.
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Finite-sample analysis and robustness

@ In practice: no access to population gradient G(3).

@ For authentic sub-Gaussian samples, empirical gradient a(ﬁ)
should have well-controlled stochastic fluctuation.

@ For e-corrupted samples, empirical average a(ﬂ) can be
arbitrarily bad.

@ We use a robust gradient estimator G,o,(/3), as a robust
counterpart of the population version G(3).

@ Question: a way to measure how close the robust version is to the
population version in high dimensions?
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amb(a) vs. G(3) — how close?

@ Past results for robust gradient descent in low dimensions (Chen,
Su & Xu ’17, Prasad et al '18) establish bounds on

|G () -G (3) .

2
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@ Liu et al '18 proposed Robust Sparse Gradient Estimator (RSGE)
to bound ||G.o (B) — G (8)||2 in high dimensions.

@ Stability of IHT + RSGE lead to optimal recovery (Liu et al '18).
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amb(a) vs. G(3) — how close?

@ Past results for robust gradient descent in low dimensions (Chen,
Su & Xu ’17, Prasad et al '18) establish bounds on

|G () -G (3) .

2

@ Liu et al '18 proposed Robust Sparse Gradient Estimator (RSGE)
to bound ||G.o (B) — G (8)||2 in high dimensions.

@ Stability of IHT + RSGE lead to optimal recovery (Liu et al '18).

@ However, /> norm bound may be too much to ask.

e For general (non-sparse, non-identity) covariance?
@ Sparse logistic regression?
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Robust Descent Condition

@ RSGE ||G.op (8) — G (8)| )2 requires bounds in all directions in
high dimensions R?.
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@ Intuition: IHT guarantees that the trajectory goes through sparse
vectors, we only need to bound a small number of directions for
robust gradients in RY.
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Robust Descent Condition

@ RSGE ||G.op (8) — G (8)| )2 requires bounds in all directions in
high dimensions R?.

@ Intuition: IHT guarantees that the trajectory goes through sparse
vectors, we only need to bound a small number of directions for
robust gradients in RY.

@ We propose a Robust Descent Condition (RDC).

(Geon(B) — G(B), B — 87| < (allB— 87l +9)||B - 8"

2 ’

e Band E are the subsequent iterates of the algorithm.
e 1 is the accuracy of the robust gradient estimator.

@ We show a Meta Theorem (Stability of Robust Hard Thresholding)
e If we have a («, ¢))-RDC, it guarantees |8 — 8*|> = O(¥)).
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RDC: a geometric illustration

(Geon(8) — G(B).8 - 3| < (allo - Bl + ) [B- 7], |
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The stability property for Robust Hard Thresholding

Theorem 1 (Meta-Theorem)

Suppose we observe samples from a statistical model with population
risk f satisfying p..,-strong convexity and pz-smoothness.

If a robust gradient estimator satisfies (v, 1)-Robust Descent Condition
where a < 35 1, then Robust Hard Thresholding with n =1/
outputs 3 such that

18 = B*l2 = O/ a),
by setting T = O (log (10 || B*||,/%))-
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The stability property for Robust Hard Thresholding

Theorem 1 (Meta-Theorem)

Suppose we observe samples from a statistical model with population
risk f satisfying p..,-strong convexity and pz-smoothness.

If a robust gradient estimator satisfies (v, 1)-Robust Descent Condition
where a < 35 1, then Robust Hard Thresholding with n =1/
outputs 3 such that

18 = B*l2 = O/ a),
by setting T = O (log (10 || B*||,/%))-

@ We prefer a sufficiently small 1.
@ This Meta-Theorem is flexible enough to recover existing results.
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Using RDC to recover existing results: |

We can use the RDC and the Meta-Theorem to recover existing results
in the literature. Some immediate examples are as follows.
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Using RDC to recover existing results: |

We can use the RDC and the Meta-Theorem to recover existing results
in the literature. Some immediate examples are as follows.
When we have uncorrupted sub-Gaussian samples.

Suppose the samples follow from sparse linear regression with
sub-Gaussian covariates and noise N(0, o2).

@ The empirical average of gradients G satisfies the RDC with
W = O(O’ /kloi(d))_

@ Plugging in this i to the Meta-Theorem recovers the well-known
minimax rate for sparse linear regression.
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Using RDC to recover existing results: Il

When we have a constant fraction of arbitrary corruption.

When X = Iy or is sparse, [BDLS17, LSLC18, DKK™19] provide
RSGE which upper bounds || G;o1(3) — G(8)|l2 < |8 — B*[, + ¥,
for a constant fraction e of corrupted samples.

e Since |(Gion(B8) — G(8), B — B%)| < [|Geon(8) — G(B)|2lIB — B" |2,
we observe that RSGE implies RDC.
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Using RDC to recover existing results: Il

When we have a constant fraction of arbitrary corruption.

When X = Iy or is sparse, [BDLS17, LSLC18, DKK™19] provide
RSGE which upper bounds || G;o1(3) — G(8)|l2 < |8 — B*[, + ¥,
for a constant fraction e of corrupted samples.

e Since |(Gion(B8) — G(8), B — B%)| < [|Geon(8) — G(B)|2lIB — B" |2,
we observe that RSGE implies RDC.

@ Hence any RSGE can be used.
e For X =/, [BDLS17, DKK*19] guarantees an RDC with
1 = O(oe) when n = Q(k?log d/€?);
e For unknown sparse 3, [LSLC18] guarantees ¢ = O(o+/€) when
n = Q(k?log d/e).

@ Plugging in this v to the Meta-Theorem recovers the State-of-the-Art
results for robust sparse regression.
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Our robust algorithms based on RDC

Robust Descent Condition
(@on(8) — G(8),8— 8| < (allB— 8"l +v)||B - 8° I

2.

@ When E — B3* only takes a small number of directions, then it is a
much easier condition to satisfy than the ¢> norm.
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2 I

@ When E — B3* only takes a small number of directions, then it is a
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@ If 3" is sparse, and the algorithm guarantees that the trajectory
goes through sparse vectors, then 3 — 8* will always be sparse.
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Robust Descent Condition
(@on(8) — G(8),8— 8| < (allB— 8"l +v)||B - 8° |

2.

@ When E — B3* only takes a small number of directions, then it is a
much easier condition to satisfy than the /o norm.

@ If 3" is sparse, and the algorithm guarantees that the trajectory
goes through sparse vectors, then 3 — 8* will always be sparse.

@ We only need to guarantee ||amb(ﬁ) — G(8)||~, and
coordinate-wise technique suffices to obtain minimax result.

@ For R' mean estimation, we can use trimmed mean for corrupted
samples and median-of-means for heavy tails.
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Our robust algorithms based on RDC

@ We only need to guarantee ||ar0b(g) — G(83)||~, and
coordinate-wise technique suffices to obtain minimax result.

@ For R' mean estimation, we can use trimmed mean for corrupted
samples and median-of-means for heavy tails.
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Our robust algorithms based on RDC

@ We only need to guarantee ||ar0b(5) — G(83)||~, and
coordinate-wise technique suffices to obtain minimax result.

@ For R' mean estimation, we can use trimmed mean for corrupted
samples and median-of-means for heavy tails.

Robust Hard Thresholding
@ Atcurrent B, calculate all gradients: g! = V¢;(3'), i € [n].
@ For {g'}"_,, we obtain a‘ﬁob satisfying the RDC by using two

i=1
options:
(#) trimmed gradient estimator for arbitrary corruption.
(%) MOM gradient estimator for heavy tailed distribution.

© Update the parameter: 31 = Py <ﬁt - naﬁob)-
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Main results

Simple coordinate-wise technique gives sharp results

Corollary for arbitrary corruptions
@ Resilient to a (1/+/k)-fraction of arbitrary outliers.
@ When € — 0, we have minimax rate.
@ When o2 — 0, we have exact recovery.
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Main results

Simple coordinate-wise technique gives sharp results

Corollary for arbitrary corruptions
@ Resilient to a (1/+/k)-fraction of arbitrary outliers.
@ When ¢ — 0, we have minimax rate.
@ When o2 — 0, we have exact recovery.

Corollary for heavy tailed distribution
@ Can deal with bounded 4-th moment covariates.
@ The same minimax rate as the sub-Gaussian case.

@ When o2 — 0, we have exact recovery.

Computational complexity: both of them are nearly linear time.
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Simulation study: arbitrary corruption

1
DJ, ——52-00
LW ——02-0.1
1 W -
o c©=0.2

log(parameter error)

5 10 15 20 25 30 35 40
Iterations

Figure: The corruption level ¢ is fixed and we use trimmed gradient for
different noise level 2. We plot log( || 3" — 3*||,) vs. iterates.
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Simulation study: heavy tailed distribution

-1.5
=)€=Lasso on Log-Normal

2f ~A—~MOM-HT on Log-Normal
- Lasso on Sub-Gaussian
S
£
()
e
2
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€
o
©
=3
.
S A
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F 329
st
-6
500 750 1000 1250 1500

Sample size

Figure: We consider log-normal samples, and we use MOM gradient for

different sample size to compare with baselines (Lasso

on heavy tailed data,

and Lasso on sub-Gaussian data). We plot log( || 3" — 3*|,) vs. sample size.

32/44



Summary

@ Important distinction in high dimensional statistics:
corruption/heavy tails both in (x, y) vs. only in y.

@ A natural condition we call the Robust Descent Condition.

@ RDC + Robust Hard Thresholding: fast linear convergence to
minimax rate.

@ Sharpest available error bound for corruption/heavy tails models.
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Low rank matrix regression

Matrix regression (multivariate regression) has n samples which
considers prediction with T tasks by mapping x € RPtoy € R.

Y X Ch w
n = _|_ n
p
T
T
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Low rank matrix regression
We are interested in the low rank structure of ® € RP*T.

U D vT

o

@ For sub-Gaussian data X and W, rank-r assumption for ®*

guarantees the estimation error '(p—f), instead of /2.

@ Nuclear norm regularization* (similar to ¢4 regularization) or
Singular Value Projection’ (SVP, similar to IHT).

“The nuclear norm is the summation of the singular values.
TThe SVP iteratively makes an orthogonal projection onto a set of low-rank
matrices.
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RDC in matrix space

What if the explanatory variable x and the stochastic noise w follow
heavy tailed distribution (bounded 4-th moment)?
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RDC in matrix space

What if the explanatory variable x and the stochastic noise w follow
heavy tailed distribution (bounded 4-th moment)?

@ Recall that IHT + RDC — a robust estimator for heavy tailed
sparse regression.

@ We can use Singular Value Projection + matrix version of RDC.

RDC in vector space
|(@on(8) - G(B). B - B")

< (alB- Bl +v)|B -8

5

RDC in matrix space
|(Go(©) - 6(©),6 - ©)

< (a]® - ©%[p + ) Hé ~ 9
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Robust gradient in matrix space

RDC in matrix space
(Geob(©) — G(©), 8 — ©7)| 5 (@@ — [ +v) [ - ©7||

@ The trajectory Ois guaranteed to be low rank by SVP.
@ We only need to guarantee ||amb(®) — G(9)||op-
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Robust gradient in matrix space
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@ The trajectory Ois guaranteed to be low rank by SVP.

@ We only need to guarantee || Giop(©) — G(O)||op-
@ We leverage a robust matrix estimator from (Minsker *18):

e trim the spectrum of each sample, and the remaining average will
have sub-Gaussian concentration bound.
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Robust gradient in matrix space

RDC in matrix space
(Geob(©) — G(©), 8 — ©7)| 5 (@@ — [ +v) [ - ©7||

@ The trajectory Ois guaranteed to be low rank by SVP.
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@ The trajectory Ois guaranteed to be low rank by SVP.

@ We only need to guarantee || Giop(©) — G(O)||op-
@ We leverage a robust matrix estimator from (Minsker *18):
e trim the spectrum of each sample, and the remaining average will
have sub-Gaussian concentration bound.
@ This robust gradient estimator satisfies matrix version of RDC, and

the Robust SVP converges linearly to the error rate 7’(”2”.

@ The Robust SVP takes O(npT)-time complexity per iteration.
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Robust factorized gradient descent

Speed up by Burer-Monteiro formulation ® = UV, where U € RP*",
and V € RT*.

Robust factorized gradient descent

au and av are robust versions of gradients on U and V,
Uttt = yt — ﬁaU,
Vi = v Gy.
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au and av are robust versions of gradients on U and V,
Uttt = yt — ﬁaU,
Vi = v Gy.

@ An element-wise MOM gradient estimator for U and V.
@ Nearly the same statistical results as the Robust SVP.
@ Time complexity O(nr(p + T)) per iteration.

@ Local linear convergence guarantee.

40/44



Summary

@ A natural extension of the RDC to the low-rank setting.

@ For covariates x with 4-th moment bound, we show that a gradient
estimator adapted from (Minsker ’18) satisfies the RDC.

@ Our algorithm, Robust SVP, obtains the sub-Gaussian rate, with
time complexity O(npT) per iteration.

@ Factorized robust gradient descent uses element-wise MOM.

e Local linear convergence to the sub-Gaussian rate.
e The time complexity is reduced to O(nr(p + T)) per iteration.
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